Deuxième feuille d'exercices

SÉRIES NUMÉRIQUES

9

Nature de la série
$$\sum \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{1 \cdot 5 \cdot 9 \cdots (4n-3)}.$$

10

Nature de la série
$$\sum_{n\geqslant 0} \frac{(2\,n)!\,n^{2\,n}}{2^n\,n!\,(3\,n)!}$$

11

ENSEA

 \mathbf{AM}

Nature de la série de terme général
$$u_n = \frac{1! + 2! + \dots + n!}{n!}.$$

12

Nature de la série
$$\sum \frac{\sqrt{n} \ln n}{n^2 + 3n + 2}.$$

13 -

_____TPE

Si la série de terme général $u_n \geqslant 0$ converge, que dire de la série de terme général $\sqrt{u_n}/n$?

14

En remarquant que
$$\int_0^1 t^n dt = \frac{1}{n+1}$$
, calculer $1 + \frac{1}{2} - \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^n}{2n+1} + \frac{(-1)^n}{2n+2} + \dots$

Considérons la suite définie par $u_0 \in]0,1[$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2}(u_n + u_n^2)$.

- 1. Montrer que la série $\sum u_n$ converge.
- **2.** Étudier la convergence de la suite $(2^n u_n)$.

Considérons deux suites réelles $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ telles que les séries $\sum u_n^2$ et $\sum v_n^2$ convergent. Montrer que la série $\sum u_n v_n$ converge absolument.

Nature de la série $\sum \cos(\pi \sqrt{n^2 + n + 1})$.

On pose

$$u_n = \frac{1}{n^{1/4}} + \frac{(-1)^n}{n^{3/4}} + o\left(\frac{1}{n^{3/4}}\right),$$

$$v_n = \frac{(-1)^n}{n^{1/4}} + \frac{(-1)^n}{n^{3/4}} + o\left(\frac{1}{n^{3/4}}\right).$$

Que dire des séries $\sum_{n\geqslant 1} u_n$ et $\sum_{n\geqslant 1} v_n$?