Troisième feuille d'exercices

ÉQUATIONS DIFFÉRENTIELLES LINÉAIRES

Résoudre $x^2 y' + y = 1$.

1. Trouver les réels a, β, γ tels que

$$\frac{1}{t(t^2-1)} = \frac{\alpha}{t} + \frac{\beta}{t+1} + \frac{\gamma}{t-1}.$$

2. Résoudre $t(t^2 - 1)x' + 2x = t^2$.

<u>21</u> ______CCP

Résoudre l'équation différentielle

$$2x(x+1)y' + (3x+4)y = 2x\sqrt{x+1}.$$

22 Résoudre $y'' + 6y' + 9y = e^{-3x}$.

23 AN

Résoudre $y'' + 2y' + y = x \operatorname{sh} x$.

24 ______CCP

Sur $]1, +\infty[$, résoudre l'équation différentielle

$$y'' + 4y' + 4y = \frac{x}{(x-1)^2} e^{-2x}.$$

_____MP

Trouver les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que pour tout $x \in \mathbb{R}$, $f'(x) + f(-x) = e^x$.

<u>26</u>

Soit $f \in \mathscr{C}^0([0, +\infty[, \mathbb{R}), \omega \in \mathbb{R}_+^*)$ et

$$(E) y'' + \omega^2 y = f.$$

Montrer que la fonction

$$\psi: x \mapsto \frac{1}{\omega} \int_0^x \sin(\omega (x - t)) f(t) dt$$

est solution de (E) sur \mathbb{R}_+ . Résoudre (E) sur \mathbb{R}_+ .