Corrigés des exercices de la troisième feuille

19

PRÉSENTATION. Nommons (E) cette équation. Les fonctions $x \mapsto x^2$ et $x \mapsto 1$ sont continues sur \mathbb{R} . Mais 0 est une singularité de (E) donc on résout sur $I_1 = \mathbb{R}_+^*$ ou $I_2 = \mathbb{R}_+^*$.

RÉSOLUTION DE L'ÉQUATION HOMOGÈNE. Pour $k \in \{1,2\}$, l'ensemble des solutions sur I_k de l'équation homogène associée est

$$\left\{x \mapsto \alpha_k \exp\left(-\int \frac{\mathrm{d}x}{x^2}\right) = \alpha_k e^{-1/x}, \alpha_k \in \mathbb{R}\right\}.$$

RÉSOLUTION COMPLÈTE. D'autre part, on voit que $x \mapsto 1$ est solution évidente de (E), donc l'ensemble des solutions sur I_k de (E) est

$$\{x \mapsto 1 + \alpha_k e^{-1/x}, \alpha_k \in \mathbb{R}\}.$$

20 CCP18

1. Avec la méthode habituelle, on trouve

$$\frac{1}{t(t^2-1)} = -\frac{1}{t} + \frac{1}{2(t+1)} + \frac{1}{2(t-1)}.$$

2. Nommons (E) cette équation. Les fonctions $t \mapsto t(t^2 - 1)$, $t \mapsto 2$ et $t \mapsto t^2$ sont continues sur \mathbb{R} . Mais -1, 0 et 1 sont les singularités de (E) donc on résout sur $I_1 =]-\infty, -1[$, $I_2 =]-1, 0[$, $I_3 =]0, 1[$ ou $I_4 =]1, +\infty[$. Sur l'intervalle I_k , pour $k \in [1, 4]$, l'ensemble des solutions de l'équation homogène est

$$\bigg\{t\mapsto \alpha_k \exp\bigg(-\int \frac{2\,\mathrm{d}t}{t\,(t^2-1)}\bigg) = \frac{\alpha_k\,t^2}{t^2-1}, \alpha_k\in\mathbb{R}\bigg\}.$$

Aucune solution particulière ne saute aux yeux : appliquons la méthode de variation de la constante. Posons

$$x(t) = \frac{\alpha_k(t) t^2}{t^2 - 1},$$

où α_k est dérivable sur I_k . On a donc

$$t(t^2 - 1)\frac{\alpha'_k(t)t^2}{t^2 - 1} = t^2,$$

d'où l'on choisit $\alpha_k(t) = \ln |t|$. Finalement, l'ensemble des solutions sur I_k de l'équation (E) est

$$\left\{t \mapsto \frac{(\alpha_k + \ln|t|)t^2}{t^2 - 1}, \ \alpha_k \in \mathbb{R}\right\}.$$

PRÉSENTATION. Les fonctions $x \mapsto 2x(x+1)$ et $x \mapsto 3x+4$ sont continues sur \mathbb{R} , mais la fonction $x \mapsto \sqrt{1+x}$ n'est définie et continue que sur $[-1,+\infty[$. En outre, les singularités de (E) sont 0 et -1 donc on étudie l'équation (E) sur $I_1=]-1,0[$ ou $I_2=]0,+\infty[$.

ÉQUATION HOMOGÈNE. Sur I_k , pour $k \in \{1, 2\}$, l'ensemble des solutions de l'équation homogène est

$$\left\{ x \mapsto \alpha_k \exp\left(-\int \frac{3x+4}{2x(x+1)} \, \mathrm{d}x\right) \right.$$
$$= \alpha_k \frac{\sqrt{x+1}}{x^2}, \ \alpha_k \in \mathbb{R} \right\}.$$

Variation de la constante. Considérons

$$\varphi: x \mapsto \sqrt{x+1}/x^2$$
.

Sur I_k , on cherche les solutions de (E) sous la forme $y = \alpha_k \varphi$, où α_k est une fonction dérivable sur I_k . En reportant dans (E), on trouve

$$2x(x+1)\alpha'_k(x)\varphi(x) = 2x\sqrt{x+1}$$

$$\iff \alpha'_k(x) = x^2/(x+1)$$

$$\iff \alpha_k(x) = \frac{1}{2}x^2 - x + \ln(x+1) + \beta_k, \ \beta_k \in \mathbb{R}.$$

L'ensemble des solutions de (E) sur I_k est

$$\left\{ x \mapsto \left(\frac{1}{2}x^2 - x + \ln(x+1) + \beta_k\right) \frac{\sqrt{x+1}}{x^2}, \beta_k \in \mathbb{R} \right\}$$

22

ÉQUATION HOMOGÈNE. L'équation caractéristique est (C) $r^2+6r+9=0$, dont -3 est racine double. L'ensemble des solutions sur $\mathbb R$ de l'équation homogène associée est donc

$$\{x \mapsto (\alpha x + \beta) e^{-3x}, \ (\alpha, \beta) \in \mathbb{R}^2 \}.$$

Solution particulière. Comme le coefficient, -3, de l'exposant de l'exponentielle du second membre est racine double de (C), on cherche une solution particulière sous la forme $x\mapsto Q(x)e^x$ où $\deg Q=2$, et l'on trouve $Q(x)=\frac{1}{2}x^2$, par exemple.

CONCLUSION. L'ensemble des solutions de l'équation complète est donc

$$\left\{ x \mapsto \frac{1}{2} x^2 e^{-3x} + (\alpha x + \beta) e^{-3x}, \ (\alpha, \beta) \in \mathbb{R}^2 \right\}.$$

23 AM

ÉQUATION HOMOGÈNE. L'équation caractéristique est (C) $r^2 + 2r + 1 = 0$, dont -1 est racine double. Donc l'ensemble des solutions de l'équation homogène est.

$$\{x \mapsto (\alpha x + \beta) e^{-x}, \ (\alpha, \beta) \in \mathbb{R}^2 \}.$$

SOLUTION PARTICULIÈRE. Le second membre s'écrit $\frac{1}{2}xe^x - \frac{1}{2}xe^{-x}$. Donc grâce au théorème de superposition, cherchons séparément une solution particulière des deux équations

$$(E_1) y'' + 2y' + y = \frac{1}{2}xe^x,$$

$$(E_2) y'' + 2y' + y = -\frac{1}{2}xe^{-x}.$$

Comme 1 n'est pas racine de (C), on cherche une solution particulière de (E_1) sous la forme $\psi_1(x) = (ax+b)e^x$, et on trouve $\psi_1(x) = \frac{1}{8}(x-1)e^x$.

En revanche, -1 est racine double de (C), donc on cherche une solution particulière de (E_2) sous la forme $\psi_2(x) = Q(x) e^{-x}$ où deg Q = 3, et l'on trouve $Q(x) = -\frac{1}{12}x^3$, par exemple.

Une solution particulière de (E) est $\psi = \psi_1 + \psi_2$.

CONCLUSION. Finalement, l'ensemble des solutions de (E) sur $\mathbb R$ est

$$\left\{x \mapsto \frac{1}{8}(x-1)e^x - \frac{1}{12}x^3e^{-x} + (\alpha x + \beta)e^{-x}, (\alpha, \beta) \in \mathbb{R}^2\right\}.$$

<u>24</u> _______CCP

PRÉSENTATION. Nommons (E) cette équation. Sur $I=]1,+\infty[$, les fonctions $x\mapsto 1,\ x\mapsto 4$ et $x\mapsto xe^{-2x}/(x-1)^2$ sont continues.

ÉQUATION HOMOGÈNE. L'équation caractéristique est (C) $r^2 + 4r + 4 = 0$, qui admet -2 comme racine double. L'ensemble des solutions sur I de l'équation homogène (H) est donc

$$\{x \mapsto (\alpha x + \beta) e^{-2x}, \ (\alpha, \beta) \in \mathbb{R}^2 \}.$$

Solution particulière. Utilisons la méthode de variation de la constante. Puisque $x\mapsto e^{-2x}$ est une solution sur I de (H) qui ne s'annule jamais, cherchons une solution particulière sur I de (E) sous la forme $y: x\mapsto \alpha(x)\,e^{-2x}$ où α est une fonction deux fois dérivable. En reportant dans (E), on obtient

$$\alpha''(x) = \frac{x}{(x-1)^2} = \frac{x-1+1}{(x-1)^2}$$
$$= \frac{1}{x-1} + \frac{1}{(x-1)^2}.$$

Comme on cherche une solution particulière de (E), intégrons en choisissant arbitrairement des constantes d'intégration nulles :

$$\alpha'(x) = \ln(x-1) - \frac{1}{x-1},$$

$$\alpha(x) = (x-1)\ln(x-1) - (x-1) - \ln(x-1)$$

$$= (x-2)\ln(x-1) - x + 1.$$

Donc une solution particulière sur I de (E) est

$$x \mapsto (x-2)\ln(x-1)e^{-2x} + (-x+1)e^{-2x}.$$

Et comme $x \mapsto (-x+1)e^{-2x}$ est solution sur I de (H), $x \mapsto (x-2)\ln(x-1)e^{-2x}$ est aussi une solution particulière sur I de (E).

CONCLUSION. Ainsi, l'ensemble des solutions sur I de (E) est

$$\{x \mapsto (x-2)\ln(x-1)e^{-2x} + (\alpha x + \beta)e^{-2x},$$

 $(\alpha, \beta) \in \mathbb{R}^2\}.$

25 MP

Soit f une solution. Alors, f' est dérivable, donc f est deux fois dérivable, et par récurrence, f est \mathscr{C}^{∞} .

En dérivant, pour tout $x \in \mathbb{R}$, $f''(x) - f'(-x) = e^x$. Comme $f'(-x) + f(x) = e^{-x}$, il s'ensuit que $f''(x) + f(x) = e^x + e^{-x} = 2 \operatorname{ch} x$. Alors il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que pour tout $x \in \mathbb{R}$,

$$f(x) = \operatorname{ch} x + \alpha \cos x + \beta \sin x.$$

En reportant dans l'équation du départ,

$$f'(x) + f(-x) = e^x + (\alpha + \beta)(\cos x - \sin x).$$

Donc on doit avoir $\alpha + \beta = 0$. Finalement, l'ensemble des solutions dérivables sur \mathbb{R} est

$$\{f: x \mapsto \operatorname{ch} x + \alpha (\cos x - \sin x), \ \alpha \in \mathbb{R}\}.$$

Commentaire. On aurait également pu résoudre en décomposant f en somme de ses parties paire et impaire. Mais c'est plus long.

26

Soit $x \in \mathbb{R}_+$. Comme il est à la fois dans l'intégrale et sur ses bornes, transformons l'écriture :

$$\psi(x) = \frac{1}{\omega} \int_0^x (\sin(\omega x) \cos(\omega t) - \cos(\omega x) \sin(\omega t)) f(t) dt$$
$$= \frac{\sin(\omega x)}{\omega} \int_0^x f(t) \cos(\omega t) dt$$
$$- \frac{\cos(\omega x)}{\omega} \int_0^x f(t) \sin(\omega t) dt.$$

Les fonctions $c: x \mapsto \cos(\omega x)$ et $s: x \mapsto \sin(\omega x)$ sont de classe \mathscr{C}^1 sur \mathbb{R} . La fonction cf est continue sur \mathbb{R} , donc d'après le théorème fondamental de l'intégration, la fonction

$$C: x \mapsto \frac{1}{\omega} \int_0^x \cos(\omega t) f(t) dt = \int_0^x \frac{c(t) f(t)}{\omega} dt$$

est la primitive de $\frac{1}{\omega}$ c f nulle en 0, et elle est de classe \mathscr{C}^1 sur \mathbb{R} . De même, la fonction $S: x \mapsto \frac{1}{\omega} \int_0^x s(t) \, f(t) \, \mathrm{d}t$ est de classe \mathscr{C}^1 sur \mathbb{R} . Alors la fonction $\psi = sC - cS$ est de classe \mathscr{C}^1 sur \mathbb{R} et

$$\psi' = \omega cC + \frac{1}{\omega} scf + \omega sS - \frac{1}{\omega} csf = \omega (cC + sS).$$

On voit que ψ' est aussi de classe \mathscr{C}^1 sur $\mathbb{R},$ donc ψ est de classe \mathscr{C}^2 sur \mathbb{R} et

$$\psi'' = -\omega^2 s C + c^2 f + \omega^2 c S + s^2 f = -\omega^2 \psi + f.$$

La fonction ψ est bien solution sur \mathbb{R} de (E).

Alors, l'ensemble des solutions de (E) sur \mathbb{R} est

$$\{\psi + \alpha c + \beta s, \ (\alpha, \beta) \in \mathbb{R}^2\}.$$