Corrigés des exercices de la quatrième feuille

______MF

L'intégrande f est continue sur]0,1[. D'une part, pour t voisin de 0, $f(t) \sim -\ln t$ et la fonction $t \mapsto -\ln t$ est intégrable sur]0, $\frac{1}{2}$]. D'autre part, pour t voisin de 1, $f(t) \sim (t-1)\ln(1-t) \to 0$ donc f est prolongeable par continuité en 1. Ainsi, f est intégrable sur]0,1[et l'intégrale existe.

Calcul formel. En posant $u = x^2$ et en intégrant par parties,

$$\int_0^{+\infty} \sin(x^2) dx = \int_0^{+\infty} \frac{\sin u}{2\sqrt{u}} du$$
$$= \left[\frac{1 - \cos u}{2\sqrt{u}} \right]_0^{+\infty} + \int_0^{+\infty} \frac{1 - \cos u}{4u^{3/2}} du.$$

JUSTIFICATION. La fonction $g: u \mapsto (1-\cos u)/u^{3/2}$ est continue sur $]0, +\infty[$. De plus, $g(u) \sim_0 \frac{1}{2} \sqrt{u}$ donc g est prolongeable par continuité en 0 et elle est intégrable sur]0, 1]. Enfin, $g(u) \leq 2/u^{3/2}$. Comme $u \mapsto 1/u^{3/2}$ est intégrable sur $[1, +\infty[$, g aussi. Alors g est intégrable sur $]0, +\infty[$ et la dernière intégrale converge.

Pour des raisons analogues, le terme entre crochets a bien un sens. Il en découle que la seconde intégrale converge.

Pour finir, le changement de variable est \mathscr{C}^1 et bijectif de \mathbb{R}_+^* dans lui-même, donc la première intégrale converge.

Commentaire. Notons l'importance du choix d'une primitive : toute autre primitive de $u\mapsto \sin u$ que $u\mapsto 1-\cos u$ conduit à un calcul qui n'a pas de sens, car les deux termes de l'intégration par parties divergent.

CONVERGENCE DE L'INTÉGRALE. Soit $n \in \mathbb{N}$. L'intégrande f_n est positive et continue sur $]0, +\infty[$. De plus, $f_n(x) \sim_0 \frac{1}{2}$ donc f_n se prolonge par continuité en 0 et elle est intégrable sur]0,1]. Enfin, $f_n(x) \ll_{+\infty} e^{-x/2}$ et $x \mapsto e^{-x/2}$ est intégrable sur $[1, +\infty[$, donc f_n aussi. Finalement, f_n est intégrable sur $]0, +\infty[$.

CALCUL DE LA LIMITE. Pour $n \in \mathbb{N}$ et x > 0,

$$f_n(x) = \frac{x e^{-nx}}{2 \operatorname{sh} x} \leqslant \frac{e^{-nx}}{2}$$

$$\operatorname{donc} \qquad \int_0^{+\infty} f_n(x) \, \mathrm{d}x \leqslant \int_0^{+\infty} \frac{e^{-nx}}{2} \, \mathrm{d}x = \frac{1}{2n}$$

$$\operatorname{et} \qquad \lim_{n \to +\infty} \int_0^{+\infty} f_n(x) \, \mathrm{d}x = 0.$$

Convergence. L'intégrande f est continue sur I=[2,3[. De plus, $f(x)\sim_2(x-2)^{-1/2}$ et $x\mapsto (x-2)^{-1/2}$ est intégrable sur $\left]2,\frac{5}{2}\right]$, donc f aussi ; et $f(x)\sim_3(3-x)^{-1/2}$ donc f est intégrable sur $\left[\frac{5}{2},3\right[$. Finalement, f est intégrable sur I et $\int_I f$ converge.

Calcul. Posons $x=\frac{5}{2}+\frac{t}{2}$: ce changement envoie]-1,1[sur]2,3[, et il est licite car $\mathscr C^1$ et bijectif. On a

$$\int_{2}^{3} \frac{dx}{\sqrt{(x-2)(3-x)}} = \int_{-1}^{1} \frac{2 dt}{\sqrt{1-t^{2}}}$$
$$= \left[2 \operatorname{Arcsin} t \right]_{-1}^{1} = \pi.$$

31 TPE

Soit $x \in \mathbb{R}$ fixé. La fonction $f: t \mapsto e^{-t(1-ix)}/\sqrt{t}$ est continue sur \mathbb{R}_+^* . Et $|f(t)| = e^{-t}/\sqrt{t} \sim_0 1/\sqrt{t}$, où $t \mapsto 1/\sqrt{t}$ est intégrable sur]0,1] donc f l'est aussi. Enfin, $|f(t)| \ll_{+\infty} e^{-t}$ et $t \mapsto e^{-t}$ est intégrable sur $[1,+\infty[$ donc f aussi. Alors f est intégrable sur \mathbb{R}_+^* et l'intégrale existe.

32

La fonction f_{α} est continue sur \mathbb{R}_{+}^{*} . On a

$$f_{\alpha}(x) \sim \frac{1}{x^{\alpha-1}} \text{ et } f_{\alpha}(x) \sim \frac{\pi}{2x^{\alpha}}$$

donc f_{α} est intégrable sur]0,1] si et seulement si $\alpha-1<1$, c'est-à-dire si $\alpha<2$, et sur $[1,+\infty[$ si et seulement si $\alpha>1$. Ainsi, f_{α} est intégrable sur \mathbb{R}_{+}^{*} si et seulement si $1<\alpha<2$.

1. D'abord, u_n est défini pour $n \ge 1$. La fonction $f: t \mapsto e^{-t^2}$ est continue sur \mathbb{R}_+ . De plus, $f(t) \ll_{+\infty} e^{-t}$ donc f est intégrable sur \mathbb{R}_+ . Posons $I = \int_0^{+\infty} f(t) dt$.

On voit que $\sum u_n$ est alternée. D'une part, comme f > 0 sur $\mathbb{R}_+, x \mapsto \int_0^x f(t) dt$ croît donc la suite de terme général $\int_{n^2}^{+\infty} f(t) dt = I - \int_0^{n^2} f(t) dt$ décroit. Ainsi, $(|u_n|)$ décroit, comme produit de suites positives et décroissantes. D'autre part, $|u_n| \leq I/n \to 0$. Donc, d'après le critère spécial des séries alternées, $\sum u_n$ converge.

2. Dans v_n , posons x = nt:

$$v_n = \frac{(-1)^n}{n} \int_0^{n^2} e^{-x^2} dx = \frac{(-1)^n I}{n} - u_n.$$

La série $\sum (-1)^n I/n$ converge grâce au critère spécial des séries alternées, et $\sum u_n$ converge, donc $\sum v_n$ converge.

Nommons f la fonction, continue sur $]1, +\infty[$.

ÉTUDE SUR [1, 2]. Au voisinage de 1,

$$f(x) = \frac{\sqrt{x-1+o(x-1)}}{(x-1)\sqrt{x}} \sim \frac{1}{\sqrt{x-1}}.$$

Comme $\frac{1}{2} < 1$, la fonction $x \mapsto 1/\sqrt{x-1}$ est intégrable sur [1,2], donc f l'est aussi.

ÉTUDE SUR $[2, +\infty[$. En $+\infty$,

$$f(x) \sim \frac{\sqrt{\ln x}}{x^{3/2}} \ll \frac{1}{x^{4/3}}.$$

Comme $\frac{4}{3} > 1$, la fonction $x \mapsto 1/x^{4/3}$ est intégrable sur $[2, +\infty[$, donc f l'est aussi.

Finalement, f est intégrable sur $]1, +\infty[$.

R5 ————

Convergence. La fonction $f: x \mapsto \ln \tan x$ est continue sur $]0, \frac{\pi}{2}[$. De plus, pour tout $x \in]0, \frac{\pi}{2}[$,

$$\ln \tan \left(\frac{\pi}{2} - x\right) = \ln \frac{1}{\tan x} = -\ln \tan x,$$

donc $|f(\frac{\pi}{2}-x)|=|f(x)|$. Alors, il suffit d'étudier l'intégrabilité de f sur $]0,\frac{\pi}{4}]$. Pour x proche de 0,

$$\ln \tan x = \ln(x + O(x^3))$$

= $\ln x + \ln(1 + O(x^2)) \sim \ln x$,

donc $|f(x)| \sim |\ln x|$. Comme $x \mapsto \ln x$ est intégrable sur]0,1], f l'est sur $]0,\frac{\pi}{4}]$. Ainsi, l'intégrale converge.

CALCUL. De plus, l'égalité $f(\frac{\pi}{2} - x) = -f(x)$ montre que le graphe de f est symétrique autour du point $(\frac{\pi}{4}, 0)$, donc l'intégrale est nulle.

Convergence. La fonction $f: x \mapsto \sin^3 x/x^2$ est continue sur \mathbb{R}_+^* . De plus, en 0, $f(x) \sim x$, donc f est prolongeable par continuité en 0, donc elle est intégrable sur]0,1]. Enfin, en $+\infty$, $|f(x)| \leq 1/x^2$ où $x \mapsto 1/x^2$ est intégrable sur $[1,+\infty[$, donc f l'est aussi. Finalement, f est intégrable sur \mathbb{R}_+^* .

CALCUL. On a

$$I = \int_0^{+\infty} \frac{\sin^3 x}{x^2} \, \mathrm{d}x = \lim_{a \to 0^+} \int_a^{+\infty} \frac{\sin^3 x}{x^2} \, \mathrm{d}x.$$

Soit a > 0. On a

$$\int_{a}^{+\infty} \frac{\sin^{3} x}{x^{2}} dx = \int_{a}^{+\infty} \frac{3 \sin x - \sin(3x)}{4x^{2}} dx$$
$$= \frac{3}{4} \int_{a}^{+\infty} \frac{\sin x}{x^{2}} dx - \frac{1}{4} \int_{a}^{+\infty} \frac{\sin(3x)}{x^{2}} dx.$$

À vrai dire, c'est ce découpage qui a motivé le passage à la limite ci-dessus, car si la borne du bas est 0, le découpage n'est pas possible. En posant $y=3\,x$,

$$\int_{a}^{+\infty} \frac{\sin(3x)}{x^2} dx = 3 \int_{3a}^{+\infty} \frac{\sin y}{y^2} dy.$$

Donc

$$\int_{a}^{+\infty} \frac{\sin^{3} x}{x^{2}} dx$$

$$= \frac{3}{4} \left(\int_{a}^{+\infty} \frac{\sin x}{x^{2}} dx - \int_{3a}^{+\infty} \frac{\sin x}{x^{2}} dx \right)$$

$$= \frac{3}{4} \int_{a}^{3a} \frac{\sin x}{x^{2}} dx.$$

Or $\sin(x)/x^2 \sim_0 1/x$, donc c'est surement le terme prépondérant dans le calcul. Alors on écrit

$$\int_{a}^{3a} \frac{\sin x}{x^{2}} dx = \int_{a}^{3a} \frac{x + \sin x - x}{x^{2}} dx$$

$$= \int_{a}^{3a} \frac{dx}{x} + \int_{a}^{3a} \frac{\sin x - x}{x^{2}} dx$$

$$= \ln 3 + \int_{a}^{3a} \frac{\sin x - x}{x^{2}} dx.$$

Comme $(\sin x - x)/x^2 \sim_0 -x/6$, la fonction $x \mapsto (\sin x - x)/x^2$ est intégrable sur]0,1], donc

$$\lim_{a \to 0^+} \int_a^{3a} \frac{\sin x - x}{x^2} \, \mathrm{d}x = 0.$$

Finalemen

$$I = \lim_{a \to 0^+} \frac{3}{4} \left(\ln 3 + \int_a^{3a} \frac{\sin x - x}{x^2} \, \mathrm{d}x \right) = \frac{3}{4} \ln 3.$$

1. Étudions rapidement la fonction $f: x \mapsto e^x - 1 - x$: pour tout $x \in \mathbb{R}$, $f'(x) = e^x - 1$. Si x < 0, f'(x) < 0 et si $x \ge 0$, $f'(x) \ge 0$, donc f décroit sur \mathbb{R}_+^* puis croît sur \mathbb{R}_+^* . Comme f(0) = 0, pour tout $x \in \mathbb{R}$, $f(x) \ge 0$, ce que l'on voulait.

VARIANTE ÉLÉGANTE. La fonction exponentielle est convexe donc son graphe est au dessus de ses tangentes. En particulier, comme la tangente en (0,1) est d'équation y = x + 1, pour tout $x \in \mathbb{R}$, $e^x \geqslant x + 1$.

En appliquant l'inégalité au réel $-x^2$, $e^{-x^2} \geqslant 1 - x^2$. En l'appliquant au réel x^2 , $e^{x^2} \geqslant 1 + x^2$, donc $e^{-x^2} \leqslant 1/(1+x^2)$.

2.a. La fonction $x \mapsto e^{-x^2}$ est continue sur \mathbb{R}_+ , et $e^{-x^2} \ll_{+\infty} e^{-x}$, où $x \mapsto e^{-x}$ est intégrable sur \mathbb{R}_+ . Donc $x \mapsto e^{-x^2}$ est intégrable sur \mathbb{R}_+ et I converge.

Soit $n \in \mathbb{N}^*$. I_n est l'intégrale sur un segment d'un polynôme donc elle converge.

Enfin, la fonction $x \mapsto 1/(1+x^2)^n$ est continue sur \mathbb{R}_+^* , et pour tout $x \geqslant 0$ et tout $n \geqslant 1, 1/(1+x^2)^n \leqslant 1/(1+x^2)$, où $x \mapsto 1/(1+x^2)$ est intégrable sur \mathbb{R}_+ comme dérivée positive de la fonction Arctangente qui est majorée sur \mathbb{R}_+ . Ainsi, $x \mapsto 1/(1+x^2)^n$ est intégrable sur \mathbb{R}_+ et J_n converge.

2.b. D'après 1, en posant $u = \sqrt{n}t$,

$$I_n = \int_0^1 (1 - t^2)^n dt \leqslant \int_0^1 e^{-nt^2} dt$$

$$\leqslant \int_0^{+\infty} e^{-nt^2} dt = \int_0^{+\infty} e^{-u^2} \frac{du}{\sqrt{n}} = \frac{I}{\sqrt{n}}.$$

De même,

$$J_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^n} \geqslant \int_0^{+\infty} e^{-nt^2} \, \mathrm{d}t = \frac{I}{\sqrt{n}}.$$

1. Pour t > 0,

$$t f(t) = e^{\ln t} \exp\left(\frac{1}{\sqrt{t}} + \ln t \frac{\sin t}{t}\right)$$
$$= \exp\left(\frac{1}{\sqrt{t}} + \ln t \left(1 + \frac{\sin t}{t}\right)\right).$$

Quand $t \to 0$,

$$\ln t \left(1 + \frac{\sin t}{t} \right) \sim 2 \ln t \ll \frac{1}{\sqrt{t}}$$

donc

$$\lim_{t \to 0} \left(\frac{1}{\sqrt{t}} + \ln t \left(1 + \frac{\sin t}{t} \right) \right) = +\infty$$

donc $\lim_{t \to 0} t f(t) = +\infty$.

2. Cela signifie que $f(t) \gg_0 1/t$. Or la fonction $t \mapsto 1/t$ n'est pas intégrable sur]0,1] donc la fonction f non plus.