Corrigés des exercices de la sixieme feuille

[59] ccp

1. Posons I = R,. Pour tout z > 0 et tout ¢ € I,

et 1 1
- < — ~ =
1+t 1412 t=too t2
—axt?
Or t + 1/t% est intégrable en +oco. Donc t T
Pest aussi. Ainsi, f est bien définie sur R,. +
2. Posons A = R et considérons la fonction
e—mt2
AX T =Ry, (z,t) » ——.
g + ( ) 1+t2
o Par opérations usuelles, pour tout ¢t € A,

x — g(z,t) est de classe €' sur A et pour tout
(x,t) e Ax 1,

dg
%(:mt) -

7t2 efa:t2
R
o On a vu que pour tout z € A, t — g(x,t) est
intégrable sur I.
o Et bien-siir, pour tout x € A, t — %(x,t) est
continue sur I, toujours par opérations usuelles.
o Pour tous a >0, = € [a,+oo] et t € T,

99
ox

2 —xt?
te —at?

(x,t)‘zw\e ;

ot a > 0et e < o 1/t2, donc t — e 2% est
intégrable sur 1.

D’apres le théoréme de la classe €' des intégrales
a parametre, on en tire que
e pour tout = € [a, +0o0], t — %(m,t) est intégrable
sur [ ;
e f est de classe ¢! sur tout [a,+oo[ C R*, donc
sur R ;
e pour tout = > 0,

+oo 42 —wt?
te
"(z) = — —dt.
I /o L+ 12

3. Voici deux preuves.

PREUVE sAVANTE. Utilisons le théoréme de conver-
gence dominée a parametre continu. Notons ici
I =]0,400[, et reprenons les autres notations de
la question précédente.

o Pour tout z € A, t — g(x,t) est continue sur [.
Pour tout ¢t € I, lim, 4 g(x,t) = 0.

Bien-siir, la fonction nulle est continue sur I.
Enfin, pour tout = € A et tout t € I,

O O O

e—ot’ 1

T, t)| = —— < —.
9z, 1) L+12 7 1+1¢2

D’apres le théoreme évoqué,
e pour tout = € A, t — g(z,t) est intégrable sur I —
ce que l'on sait déja depuis la question 1;
e la fonction nulle est intégrable sur I — quelle sur-
prise;

e et I'on peut permuter :

+oo e—xt2 +oo e—xt2

lim ——dt = lim dt = 0.
z—+o00 Jq 142 A z —+

PREUVE DIRECTE. L’idée dans ce genre de situation

est de se débarrasser du x dans I’exponentielle. Pour

cela, pour > 0, posons u = t4/x. ¢’est un change-

ment de variable licite, car bijectif et de classe €' de

I dans I. Alors,

+oo  —u? +o0
e du 1 2
flz :/ —— — < — e " du,
U 0o 1+% SV o
et limy 4o f(x) = 0.
Commentaire. Ou ’on voit que la preuve savante n’est
pas toujours la plus efficace.
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1. Soit t € R. La fonction h : z — e cos(2tx)
est continue sur R;. En outre, pour tout x > 1,
|e*"‘/’2 cos(2tz)| < e < e et x s e T est inté-
grable sur Ry donc h aussi. Ainsi, f est bien définie
sur R.

2. Posons A=R, I =R, et

g:AxI =R, (t,z)— e cos(2tx).

o Pour tout z € I, t — g(t,z) est € sur A et pour
tout (t,z) € A x I,

89 2
—=(t,x) = —2zxze” " sin(2tx).

21,2 (212)
o On vient de le voir, pour tout t € A, x — g(t,x)
est intégrable sur I.
o Pourtoutte€ A, z — %(t,x) est continue sur I.
o Enfin, pour tout (¢,z) € A x I,

99

7(75’ $)

2
9t <2ze™? Kpqoo € T

Donc la fonction  — 2ze™%

une domination valide de %.
Alors,
e pour tout t € A, x %(t, x) est intégrable sur I,
o f est de classe €' sur A
e et pour tout ¢t € A,

+oo )
ro= [ S

2, intégrable sur I, est

+o0 5
—2/ xe ™ sin(2tx)dz.
0

3. Soit t € R. En intégrant par parties,
+oo

)= {e‘mzsin(%x)} :OO - 2t/0 e
— 2t f (1),

L’intégration par parties est valide car tous les termes
manipulés ont un sens. L’ensemble des solutions sur R

@ cos(2tz)dx
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de cette équation différenticlle est Vect(t — e=%).
Alors pour tout ¢t € R,

CccCP

[61]

1. Soit € R. La fonction h : t — e~ 'sin(zt)/t est
continue sur |0, +00[. De plus, pour tout ¢ € |0, +00],
_ |sin(txt)| <ot

|z t]
t

|h(t)] = =ze b
Or la fonction ¢ — et est intégrable sur |0, +oo[ donc
aussi la fonction h. Ainsi, f est définie sur R.

2. Utilisons le théoréme de la classe €' des inté-
grales dépendant d’un parametre. Considérons A = R,
I =1]0,+00] et

_, sin(zt)

g: AxI =R, (x ;

t)—e

o Par opérations usuelles, pour tout t € I,
x +— g(z,t) est de classe €' sur A. De plus, pour
tout (x,t) € A x I,

dg

= — —t
8x (.’E, t) €

cos(zt).

o On a vu a la question précédente que pour tout
x € A, t— g(x,t) est intégrable sur I.

o T0u30urs par opérations usuelles, pour tout z € I,
t— 52 (Jc t) est continue sur I.

o Pour tout (z,t) € A x I,

ol t — e~ est intégrable sur I, donc 2 52 vérifie I'hy-
pothese de domination.

D’apres le théoreme évoqué
e pour tout x € A, t — a 9 (z,t) est intégrable sur I;
o f est de classe %1 sur A;
e et pour tout x € A,

/+oo ag
0 ox

Soit x € A. On a

+oo
Re(/ —t lztdt)
0
1+'Lz)t
{ -1+ zx
1
1—21: T 1ta2

£(0) + Arctan z. Or, clairement,

+oo
f'(@) = (z,t)dt = /0 e " cos(zt)dt.

En intégrant, f(x) =
f(0) =0, donc

= Arctan z.

f(x)

2

4
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1. Posons I = ]0, +oo[. Soit = € R. Tout d’abord la
fonction

1 —cos(xzt) _,
2

est continue sur I. De plus, h(t) ~¢—0 %1‘2. L’équi-
valent est valide méme si x = 0, car h est alors la
fonction nulle. Ainsi h est prolongeable par conti-
nuité en 0, donc elle est intégrable sur |0, 1]. Enfin,
|h(t)] <istoo 1/t%, ot t — 1/t% est intégrable sur
[1,400[, donc h Vest aussi.

h:t—

Finalement, h est intégrable sur I et f est définie
sur A =R.

2. Montrons que f est de classe €2 sur A. Introdui-
sons la fonction

1-— t
cos(zt) ot

g: AxI =R, (z,t)—~ e

o Par opérations usuelles, pour tout t € I,
x +— g(z,t) est de classe €2 sur A. De plus, pour

tout (z,t) € A x I,
g _sin(zt) 0%g B i
%(x,t) =—¢ et @(x,t) = cos(zt)e

o On a vu précédemment que pour tout x € A,
t — g(z,t) est intégrable sur I.

Par opérations usuelles, tn—> g (z,t) est continue

sur I. Et pour tout t € I, (a: t)| < |zle”t, ou
t — et est intégrable sur I, donc t— 8q( ,t) Dest
aussi.

Commentaire. Ici, la majoration est valide sur I tout
entier, donc il n’est pas nécessaire de le couper en
deux pour l'intégrabilité.

o Par opération usuelles, pour tout x € A, %(w, t)
est continue sur I.

o Enfin, pour tout (z,t) € A x I, |34 (x t) <e’t,
o t — e~t est intégrable sur I (bls) et ne dépend
pas de x, donc constitue une domination valide.

Il s’ensuit que
e pourtoutz € A, t— %(m, t) est intégrable sur I ;
e f est ce classe €2 sur A;
e pour tout z € A,

, 9 +oeo sin(zt)
f= [ Fwna- [
+o0 82 +o0
' (z) = / 8x2 / cos(wt)e " dt
0

Foo 1
:Re/ Tttt gy ) — )
0 T 1442

Comme f/(0) =0, f'(x) = Arctan z. Alors, comme
f(0) = 0 et en intégrant par parties,

e tdt,

xt

f(z) = z Arctanz — £ In(1 + 2?).
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[63] EIVP17
1. Posons I = [0, 7], A=R et
g: AxI =R, (z,t) — cos(zsin(t)),
de sorte que f est la fonction
f:A=R, z— /g(m,t)dt.
I
o Par opérations usuelles, pour tout ¢t € I,
x> g(z,t) est de classe €2 sur A et
Jdg . . .
Y(z,t) e Ax I, D ((E t) = —sin(t) sin(z sin(t)),
82
o 2(;10 t) = —sin®(t) cos(x sin(t)).

o Encore par operatlons usuelles, pour tout x € A,
t— g(z,t) et t — a 9 (z,t) sont continues sur I, donc
elles y sont intégrables car I est un segment.

o Toujours par opérations usuelles, pour tout z € A,
t— aﬂ 4 (z,t) est continue sur I.

o Enfin, on a la domination suivante :
0%g

V(x,t)EAXI, @

w)] <1,

ou t — 1 est continue donc intégrable sur le segment 1.

Alors d’apres le théoreme de la classe €2 des inté-
grales dépendant d’un parametre,

e pour tout x € A, t — %(z, t) est intégrable sur I
— ce qui était évident puisque I est un segment ;

o f est de classe €2 sur A;

e et pour tout x € A,

= [ o
L [m. . .
_—;/O sin(t) sin(z sin(t)) dt,
T R
(z) = ; axQ( ,t)dt
L cos(x sin
__;/o sin”(t) cos( (t))dt.

2. Pour tout x € A, en intégrant par parties,

™

T f(z) = [cos(t) sin(z sin(t))} .
- /07T x cos?(t) cos(z sin(t)) dt

=z /07(1 — sin?(t)) cos(z sin(t))dt
= —ar(f(z)+ f'(2)),

et f est solution de I’équation différentielle proposée.

3
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1. Pour prouver la classe €2 de f sur R* %, prouvons
celle de l'intégrale & parametre définie par
+oo —xt
1—e
x) = ——dt.
9(z) /0 14 t2
Posons donc A =R, I =R, et
1 —e %t
142
o Par opérations usuelles, pour tout ¢
x> h(x,t) est €2 sur A et pour tout x € A,

oh te=*t  92h
%(xﬂt) 1+t2’ 82( t):
o Par opérations usuelles,
t s h(z,t), t >
nues sur 1.
o Pourtoutz € Aettel,

h:AxI—=R, (z,t) —
e I,
7t2€7wt
1+t2

pour tout * € A,
8h ~(x,t) et t |—> 9% (x,t) sont conti-

ot t — 1/(1+12) est intégrable sur I, donc t — h(w,t)
Pest aussi. De méme, comme ¢t < 2t < 1 + ¢2,

8h(
Or

x t)‘ e "t

oll t — e~ %! est intégrable sur I car x > 0, donc
t— 6h( ,t) Dest aussi.
o Pour tout segment [a,b] C A, avec 0 < a < b, tout
x € la,blett el

t2 —xt

9%h _ te o —at
a2 WO = T <

oll t = e~ est intégrable sur I car a > 0. Donc %
vérifie I’hypotheése de domination.

En vertu du théoréme de la classe €2 des intégrales
a parametre,
e pour tout z € [a,b], t — amQ h(x,t) est intégrable
sur I,
e g est de classe €2 sur tout [a,b] C A, donc sur A;
e et pour tout x € A,

+oo oh +oo tefxt
Iy
J(@) _/0 ()t = /O at

14+¢2

+oo 62h +oo t2 efzpt
") = t)dt = —/ — _dt
@[ Gmena-- [T

Donc par produit, f est bien 2 sur R%.
2. Soit = > 0.

I R N U R
f(x):f/ 7—7/ ¢t
T 0 1+t2 X 0 1+t2
1 “+oo —xt
:1_,/ .
22 xJ, 1+t

0,0<

Or pour tout t >

+o0o e*ﬂ +oo
og/ —dts/ e tdt = —
0 1+4+¢2 0
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“+o0 —xt
Ainsi, lim dt =0 et en +o0,
z—+oo Jq 1+ ¢2
T 1 s
[65] cs

1. Tout d’abord, pour tout x > 0 et t > 0,

—xt
<e

efxt
‘ V142
oll t — e~ %t est intégrable sur R, car z > 0. Donc F'
est définie (au moins) sur R .
En outre, si 0 < z < y, par croissance de 'expo-
nentielle, pour tout ¢ > 0,
e—xt e—yt
> )
VI+£2~ 1+
et par croissance de 'intégrale, F'(z) > F(y). Ainsi,
F décroit strictement sur R7 .

Commentaire. Il est donc inutile (et long!) de dériver F.

2. Voici deux preuves.

PREUVE DIRECTE. On voit que pour tout = > 0,

+o00o 1
/ e Tt = —,
0 X

donc F tend vers 0 en +oo.

F(z)

PREUVE SAVANTE. Utilisons le théoreme de conver-
gence dominée a parametre continu.
D’une part, pour tout t > 0,

e—zt

lim ——=0
z—+00 /1 4+ 12
D’autre part, puisque = tend vers 400, on peut se
restreindre a x > 1. Pour tout ¢t > 0 et tout z > 1,

<e™!

)

e—zt
‘ VI1+t2
ol t — et constitue une domination valable.

Alors, le théoreme s’applique et I’on peut permuter
la limite et I'intégrale :

“+o0 efzrt
m Fz) = /0 S s
3. Pour des raisons tres analogues, G est définie sur R.
On voit que pour z réel, G(z) = H(x?) ol
—t

+oo
e
H:uw —dt.
/0 V1t ut?
Si ’'on montre que H est de classe ¢! au voisinage
de 0, on pourra écrire H(u) = a + bu + o(u), donc
G(z) = a+ ba® + o(z?). Mais comme G est (claire-
ment) paire, on aura G(x) = a + ba? + o(z?).

4

4

,

Montrons que H est de classe €. Il faut déja
qu’elle soit définie, donc il faut que 1 + ut? > 0
c’est-a~dire u > 0. Posons A =1 =R, et

e—t

V1t ut?

Pour tout u € A, t — h(x,t) est continue sur I et
pour tout t € I, |h(u,t)| < et ottt + et est inté-
grable sur I donc ¢ — h(z,t) Uest aussi. Pour tout
t € I, u s h(u,t) est de classe €’ sur A et pour tout
(u,t) € Ax I,

3h( N —t2et
—(ut) = ——— .
o0\ = 30wy

h:AxI—=R, (u,t)—

Bien-stir, pour tout u € I, t — %(u, t) est continue
sur I. Enfin, pour tout (u,t) € A x I,

oh
—(u,t
P

< t2et

ou
oh
u

7]
classe €1 sur A et pour tout u > 0,

t — t2e7? est continue et intégrable sur I, et
vérifie I'hypotheése de domination. Alors H est de

—t2et

+oo oh 400
—(u,t)dt = — .
/O 8u(u’ ) /0 2(1 + ut?)3/2

De plus, pour u > 0,
H(u) = H(0) + uH'(0) + o(u)

+oo +oo 1
:/ e_tdt—u/ —t?e~tdt + o(u)
0 o 2

=1—u+o(u).

H'(u)

Ainsi, quand x est proche de 0,

G(z) =1—22+o(z?).
Commentaire. Cette approche est plus aisée que de
dériver G trois fois.

Soit > 0. Dans F'(x), en posant v = xt, qui est
un changement de variable de classe €' et bijectif
de Ry dans lui-méme, on a

+oo e~V
Fz) = /0 7@

Si z tend vers 400, on peut donc écrire

=—-G
x

dv 1
x

Py =1 (1 4 o))
s m o)

Commentaire. Ou I'on retrouve la limite de la ques-
tion 2.



