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Convergence simple. On voit que fn(0) = 0 et
que pour x > 0, limn→+∞ fn(x) = 1, donc la suite
de fonctions (fn) converge simplement sur R+ vers
la fonction

f : R+ → R, x 7→

{
0 si x = 0,

1 si x > 0.

Convergence uniforme sur R+.
Première façon. La convergence ne peut être uni-

forme sur R+, car les fn sont continues sur R+, quand
f ne l’est pas.

Deuxième façon. Clairement, en posant xn = 1/n,
on voit que

fn(xn) − f(xn) = 1
2 − 0.

Ce terme ne tend pas vers 0 quand n tend vers +∞,
donc la suite de fonctions (fn) ne converge pas uni-
formément sur R+ vers la fonction f .
Convergence uniforme sur tout intervalle
[a, +∞[ où a > 0. D’après l’étude précédente, on voit
que c’est 0 qui pose problème. Plaçons-nous donc sur
un intervalle [a, +∞[ où a > 0. Pour tous x ∈ [a, +∞[
et n ∈ N,

|fn(x) − f(x)| = 1 − nx

1 + nx
= 1

1 + nx
⩽

1
1 + na

.

Ce dernier majorant ne dépend pas de x et tend
vers 0 avec n, donc la suite de fonctions (fn) converge
uniformément vers f sur tout intervalle [a, +∞[ où
a > 0.

79 AM

Comme les fonctions fn sont impaires, menons
l’étude sur R+.
Convergence simple. Clairement, pour tout x ⩾ 0,
limn→+∞ fn(x) = x. Donc la suite de fonctions
(fn) converge simplement sur R+ vers la fonction
f : x 7→ x.
Convergence uniforme. Pour tout n ∈ N, la fonc-
tion fn − f n’est pas bornée sur R+, donc la suite de
fonctions (fn) ne converge pas uniformément sur R+
vers f .
Convergence uniforme sur tout intervalle
[0, b] où b > 0. L’étude précédente montre que le pro-
blème se situe en +∞. Plaçons-nous donc sur un in-
tervalle [0, b], avec b > 0. Pour tout entier n ⩾ ⌊b⌋+1,
b/n ⩽ 1. Alors, pour tout x ∈ [0, b], 0 ⩽ x/n ⩽ 1
donc 0 ⩽ sin(x/n) ⩽ x/n et

|fn(x) − f(x)| = x − n sin(x/n).
Or x 7→ x − n sin(x/n) croît sur [0, b] car sa dérivée
vaut 1 − cos(x/n) ⩾ 0. Alors

∥fn − f∥[0,b]
∞ = b − n sin(b/n) −−−−−→

n→+∞
0,

donc la suite de fonctions (fn) converge uniformément
vers f sur tout intervalle [0, b] où b > 0.
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Convergence simple. D’une part, fn(0)=f(0)=0.
D’autre part, si x > 0, limn→+∞ n x = +∞ et
limy→+∞ f(y) = 0, donc par composition des limites,
limn→+∞ fn(x) = 0. Ainsi, la suite de fonctions (fn)
converge simplement sur R+ vers la fonction nulle.

Convergence uniforme. Comme la fonction f
n’est pas nulle, il existe x0 ∈ R+ tel que f(x0) ̸= 0.
Pour n ∈ N∗, posons xn = x0/n : on voit que
fn(xn) = f(x0) ̸→ 0 donc la suite de fonctions (fn)
ne converge pas uniformément sur R+ vers la fonction
nulle.

Convergence uniforme sur tout intervalle
[a, +∞[ où a > 0. L’étude précédente montre que le
problème se situe en 0. Plaçons-nous donc sur un in-
tervalle [a, +∞[ où a > 0. Considérons un réel ε > 0.
Comme lim+∞ f = 0, il existe A > 0 tel que pour
tout y ⩾ A, |f(y)| ⩽ ε. En outre, il existe N ∈ N tel
que pour tout entier n ⩾ N , n a ⩾ A. Alors, pour
tous x ∈ [a, +∞[ et tout n ⩾ N , nx ⩾ na ⩾ A, donc
|fn(x)| = |f(nx)| ⩽ ε, d’où ∥fn∥[a,+∞[

∞ ⩽ ε. Ainsi, la
suite de fonctions (fn) converge uniformément vers
la fonction nulle sur tout intervalle [a, +∞[ où a > 0.
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Convergence simple. Soit x ∈ R+. Pour n assez
grand, n ⩾ x, donc

fn(x) =
(

1 − x

n

)n

= exp
(

n ln
(

1 − x

n

))
−−−−−→
n→+∞

e−x

et la suite de fonctions (fn) converge simplement
sur R+ vers la fonction f : x 7→ e−x.

Convergence uniforme. Soit n ∈ N∗. Il s’agit de
majorer ∥fn − f∥[0,+∞[

∞ . Comme fn ⩽ f , étudions
gn = f −fn. En découpant [0, +∞[ = [0, n[∪ [n, +∞[,
on peut dire que

(1) ∥gn∥[0,+∞[
∞ = max

{
∥gn∥[0,n[

∞ , ∥gn∥[n,+∞[
∞

}
.

D’abord, si x ∈ [n, +∞[, gn(x) = e−x ⩽ e−n donc

(2) ∥gn∥[n,+∞[
∞ ⩽ e−n.

Étudions maintenant ∥gn∥[0,n[
∞ à l’aide des varia-

tions de gn sur ]0, n[ : on exclut 0 car gn(0) = 0. Si
x ∈ ]0, n[,

g′
n(x) = −e−x +

(
1 − x

n

)n−1

= e−x
(

−1 + exp
(

x + (n − 1) ln
(

1 − x

n

)))
.
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Pour tout u ∈ R, le signe de eu − 1 est le même que
celui de u : pour connaitre le signe de g′

n(x), il reste
donc à étudier le signe de

hn(x) = x + (n − 1) ln
(

1 − x

n

)
.

Sur ]0, n[, la fonction x 7→ 1−x/n décroit strictement,
donc hn aussi par croissance du logarithme. Or

lim
x→0+

hn(x) = 1 et lim
x→n−

hn(x) = −∞.

Donc hn s’annule une et une seule fois sur ]0, n[. Il
en est donc de même pour g′

n. Nommons an l’unique
réel de ]0, n[ tel que g′

n(an) = 0.
Avec l’étude de signes précédente, gn croît stricte-

ment sur ]0, an[ puis décroit strictement sur ]an, n[.
Donc ∥gn∥[0,n[

∞ = gn(an). On sait que

g′
n(an) = 0 = −e−an +

(
1 − an

n

)n−1
,

donc

gn(an) = e−an −
(

1 − an

n

)(
1 − an

n

)n−1

= e−an −
(

1 − an

n

)
e−an = an e−an

n
⩽

1
n

car u 7→ ue−u est majorée par 1 sur R+. Ainsi,

(3) ∥gn∥[0,n[
∞ ⩽

1
n

.

De (1), (2) et (3), on tire que

∥gn∥[0,+∞[
∞ ⩽

1
n

,

où l’on voit que
lim

n→+∞
∥gn∥[0,+∞[

∞ = 0,

ce qui signifie que la suite de fonctions (fn)n⩾1
converge uniformément sur R+ vers la fonction f .

82 CCP

1. Les fonctions fn sont impaires, donc il suffit de
mener l’étude sur R+. On voit que fn(0) = 0, donc∑

fn(0) converge. Soit x ∈ R∗
+. Pour tout n ∈ N∗,

|fn(x)| = fn(x) ≪ 1/n2, où
∑

1/n2 converge donc∑
fn(x) converge absolument. Finalement,

∑
fn

converge simplement et absolument sur R.
2. Grâce à la convergence simple, la convergence uni-
forme de la série de fonctions

∑
fn équivaut à celle

de la suite des restes (Rn) vers la fonction nulle. Soit
n ∈ N et x ⩾ 0. Comme on n’ajoute que des termes
positifs,

Rn(x) =
+∞∑

k=n+1
k xe−kx2

⩾ (n + 1)xe−(n+1)x2
.

Alors

Rn

(
1

n + 1

)
⩾ e−1/(n+1) −−−−−→

n→+∞
1 ̸= 0.

Cela signifie que la suite de fonctions (Rn) ne converge
pas uniformément vers la fonction nulle sur R+, donc
la série de fonctions

∑
fn ne converge pas uniformé-

ment sur R+.

83 CS

Comme les fn sont paires, menons l’étude sur R+.

Convergence normale. Pour tout n ∈ N∗,

∥fn∥[0,+∞[
∞ = fn(0) = 1

n

et la série de Riemann
∑

1/n diverge, donc la série
de fonctions

∑
n⩾1 fn ne converge pas normalement

sur R+.

Convergence normale sur tout intervalle
[a, +∞[ où a > 0. Comme la borne supérieure de fn

est atteinte en 0, on se doute qu’il faut s’en écarter.
Soit a > 0. Pour tout x ∈ [a, +∞[,

0 ⩽ fn(x) ⩽ 1
n2 a2 .

La série de Riemann
∑

1/n2 converge, donc la sé-
rie de fonctions

∑
n⩾1 fn converge normalement sur

[a, +∞[.

Convergence simple.
∑

n⩾1 fn converge normale-
ment donc uniformément sur tout intervalle [a, +∞[
où a > 0. Elle y converge donc simplement aussi.
Comme c’est vrai pour tout a > 0, mais que par
ailleurs fn(0) = 1/n et que

∑
n⩾1 fn(0) diverge, fina-

lement,
∑

n⩾1 fn converge simplement sur R∗
+.
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Comme les fn sont paires, menons l’étude sur R+.

Convergence normale. ∥fn∥R+
∞ = 1/n donc

∑
fn

ne converge pas normalement sur R+.

Convergence simple. Soit x ∈ R+ fixé. Uti-
lisons le critère spécial des séries alternées. Clai-
rement, (−1)n fn(x) ne change pas de signe et
limn→+∞|fn(x)| = 0. Pour étudier la décroissance
de la suite (|fn(x)|)n, introduisons

g : y 7→ y

y2 + x2 ,

de sorte que |fn(x)| = g(n). Pour tout y ⩾ 0,

g′(y) = x2 − y2

(y2 + x2)2 .

Il s’ensuit que g′(y) < 0 pour y > x : ainsi, (|fn(x)|)n

décroit à partir du rang N = ⌊x⌋ + 1. Du coup,∑
fn(x) converge d’après le critère des séries alter-

nées, donc
∑

fn converge simplement sur R.

Convergence uniforme. On voit que le rang à
partir duquel (|fn(x)|)n décroit dépend de x, donc
à priori on ne peut pas utiliser le critère spécial des
séries alternées de façon uniforme sur R. Soit a ⩾ 0.
Posons N = ⌊a⌋+1. Pour tout x ∈ [0, a], N ⩾ ⌊x⌋+1
donc la suite (|fn(x)|)n⩾N décroit. Ainsi, on peut
utiliser le critère spécial des séries alternées : pour
n ⩾ N , Rn =

∑+∞
k=n+1 fk est majoré par le premier

terme négligé : |Rn| ⩽ |fn+1| ⩽ 1/n. Ainsi, la suite
(Rn) converge uniformément vers la fonction nulle sur
[0, a], et

∑
fn y converge uniformément.
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1. Introduction. Considérons la fonction

w : z 7→ z − i

z + 2 i
,

de sorte que pour tout n ∈ N, fn = wn. Cette fonction
w est définie sur D = C ∖ {2 i}, donc plaçons-nous
désormais sur D.

À titre d’entrainement, étudions successivement
les convergences simple, uniforme et normale.
Convergence simple. Soit z ∈ D. La série géomé-
trique

∑
wn(z) converge si et seulement si |w(z)| < 1,

soit |z − i| < |z + 2 i|. Cela traduit le fait que la dis-
tance de z à i est strictement inférieure à celle de
z à 2 i. L’égalité de ces deux distances est réalisée
sur la médiatrice du segment [−2 i, i], c’est-à-dire la
droite Im z = − 1

2 . Ainsi, la série de fonctions
∑

fn

converge simplement sur le demi-plan H d’équation
Im z > − 1

2 .
Convergence uniforme. Soient z ∈ H et n ∈ N.
Le reste d’ordre n est

Rn(z) =
+∞∑

k=n+1
wk(z) = wn+1(z)

1 − w(z) .

En choisissant z = iy, donc avec y ∈ ]− 1
2 , +∞[, on a

w(iy) = y − 1
y + 2 ,

donc

Rn(iy) =

(
y − 1
y + 2

)n+1

1 − y − 1
y + 2

= (y − 1)n+1

3(y + 2)n

et
|Rn(iy)| = |y − 1|n+1

3 |y + 2|n
−−−−−→
y→+∞

+∞.

Cela prouve que le reste Rn n’est pas borné sur H,
donc ∥Rn∥H

∞ n’existe pas et la suite de fonctions (Rn)
ne converge pas uniformément sur H vers la fonction
nulle. Donc la série de fonction

∑
fn ne converge pas

uniformément sur H.
Commentaire. Le choix de z = iy est motivé de façon
géométrique. On a vu que |w(z)| mesure le rapport
des distances de z à i et −2 i, et ces deux points sont
sur la droite iR. Il est donc naturel d’en étudier les
points.

Convergence normale. Puisqu’elle ne converge
pas uniformément sur H, la série de fonctions

∑
fn

n’y converge pas normalement non plus.

Somme. Pour z ∈ H,
+∞∑
n=0

(
z − i

z + 2 i

)n

= 1

1 − z − i

z + 2 i

= 2 − iz

3 .
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