
Notions et contenus Capacités exigibles		CdE
1.3. Oscillateurs		
Oscillateur quasisinusoïdal réalisé en bouclant un filtre passebande du deuxième ordre avec un amplificateur.	Exprimer les conditions théoriques (gain et fréquence) d'auto-oscillation sinusoïdale d'un système linéaire bouclé. Analyser sur l'équation différentielle l'inégalité que doit vérifier le gain de l'amplificateur afin d'assurer le démarrage des oscillations. Interpréter le rôle des non-linéarités dans la stabilisation de l'amplitude des oscillations. Mettre en œuvre un oscillateur quasi-sinusoïdale et analyser les spectres des signaux générés. Capacité numérique: à l'aide d'un langage de programmation, simuler l'évolution temporelle d'un signal généré par un oscillateur.	CdE2 :18.3 ; 18.5 à 18.8
Oscillateur de relaxation associant un intégrateur et un comparateur à hystérésis. Générateur de signaux non sinusoïdaux.		CdE 2 : 18.9 ; 18.10

Un oscillateur électronique est un système qui délivre un signal périodique (tension ou courant) à partir d'une grandeur constante dans le temps.

Voir en TP le vase de Tantale, oscillateur avec un fluide

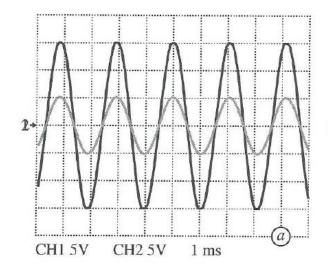
<u>Applications</u>: signaux d'horloge

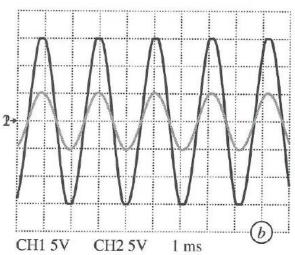
Schéma de principe :

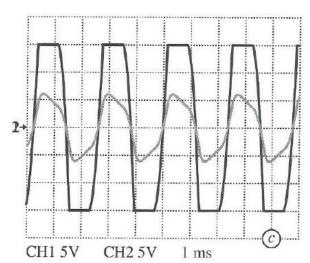
L'énergie nécessaire au fonctionnement de l'oscillateur provient de l'alimentation du composant actif.

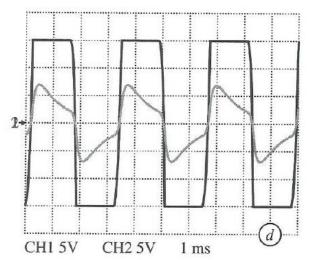
I. <u>Oscillateur quasisinusoïdal à Pont de Wien</u>

A = ALI en montage non-inverseur de gain G : v2 = G.v1


B = filtre passe-bande de fréquence de résonance f_o , de facteur de qualité Q, et de gain à la résonance H_o : $\underline{v1} = \underline{H.v2}$


1. Signaux obtenus avec un oscillateur quasisinusoïdal à pont de Wien


CH1 en gras v2(t);


CH2 v1(t) G augmente

cas	a	b	С	d
G	3,03	3,06	4,0	7,0
T (ms)	2,1	2,1	2,4	3,2

Démarrage des oscillations

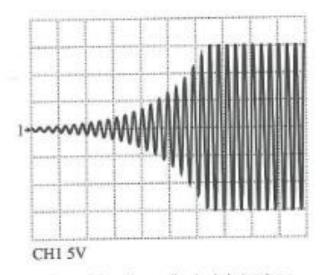


Figure 3.6 - Forme d'onde de la tension x.

2. Conditions de fonctionnement en oscillateur quasisinusoïdal

En exprimant que $\frac{v2}{v1} = G = \frac{1}{H}$ on en déduit que

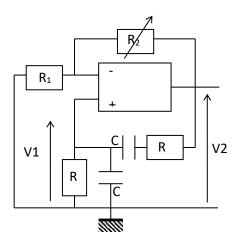
 $H_0G = 1$ et la fréquence des oscillations est celle de la fréquence de résonance du filtre.

3. Equation différentielle

$$\frac{d^2v^2}{dt^2} + \frac{\omega_o}{Q}(1 - GH_o)\frac{dv^2}{dt} + {\omega_o}^2v^2 = 0$$

4. Condition de démarrage des oscillations

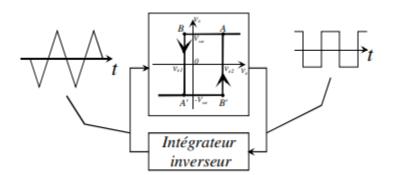
Le démarrage des oscillations nécessite que le système soit instable donc $1-GH_o<0$.


Les oscillations seront quasisinusoïdales d'équation différentielle :

$$\frac{d^2v^2}{dt^2} + \omega_o^2 v^2 = 0 \qquad \text{Si } 1 - GH_o \to 0$$

L'amplitude des oscillations est limitée par la tension de saturation de l'ALI.

Fichiers python en annexe: 22EC3 demarrage osc simple et 22EC3 demarrage osc sat


5. Schéma du montage

II. Oscillateur à relaxation

1. Schéma de principe

A est un comparateur à hystérésis ; B est un intégrateur

2. Caractéristique de transfert du comparateur à hystérésis non inverseur

 $R_2\,\mbox{en}$ rétroaction positive ; $R_1\,\mbox{sur}$ l'entrée non -inverseuse ; entrée inverseuse à la masse

3. Intégrateur inverseur à ALI en régime linéaire

De constante de temps RC

4. Tracés des chronogrammes

On montre que : l'amplitude du signal carré est V_{sat} ;

l'amplitude du triangle $\frac{R_1}{R_2}V_{sat}$;

la période des oscillations est T = $4 \frac{R_1}{R_2} RC$.

5. Schéma du montage

