PHENOMENES DE TRANSPORT

Chapitre 1 : conduction thermique

Notions et contenus

\ Capacités exigibles

CdE

2. 2. Transfert thermique par conduction

2.2.2. Equation de la diffusion thermique

Les différents modes de transfert
thermique : diffusion, convection et
rayonnement.

Décrire les 3 modes de transfert thermique

Flux thermique. Vecteur densité de
courant thermique J,.

Exprimer le flux thermique comme le flux du
vecteur ], a travers une surface orientée.

CdE2:11.1;
12.1

Equilibre thermodynamique local.

Enoncer I’hypothése de 1’équilibre
thermodynamique local.

Utiliser les champs scalaires intensifs
(volumiques ou massiques) associés a des
grandeurs extensives de la thermodynamique.

Loi de Fourier.

Enoncer et utiliser la loi de Fourier.

Citer quelques ordres de grandeur de
conductivité thermique dans les conditions
usuelles : air, eau, béton, acier.

CdE2:12.2;
12.3

Bilan d’énergie.

Etablir, pour un milieu évoluant & volume
constant, I’équation locale traduisant le
premier principe dans le cas d’un probléme ne
dépendant qu’une d’une seule coordonnée
d’espace en coordonnées cartésiennes,
cylindriques et sphériques.

Utiliser une généralisation admise en
géométrie quelconque en utilisant 1I’opérateur
divergence et son expression fournie.

CdE2:11.1

Equation de la diffusion thermique.

Etablir 1’équation de diffusion thermique,
avec ou sans terme source.

Analyser une équation de diffusion en ordre
de grandeur pour relier des échelles
caractéristiques spatiale et temporelle.
Relier I’équation de diffusion a
I’irréversibilité temporelle du phénomeéne.

Capacité numeérique : a l'aide d’'un
langage de programmation, résoudre
I’équation de la diffusionthermique a une
dimension par une méthode des
différences finies dérivée de la méthode
d’Euler explicite de résolution des
équations différentielles ordinaires.

CdE2:11.2;
129a12.12

CdE2:11.3

Conditions aux limites.

Exploiter la continuité du flux thermique.
Exploiter la continuité de la température pour
un contact thermique parfait.

Utiliser la relation de Newton (fournie) a
I’interface solide-fluide.

CdE2:12.4a
12.6

2.2.3. Régime stationnaire, ARQS

Résistance ou conductance thermique.

Définir la notion de résistance thermique par
analogie avec I’électrocinétique et énoncer les
conditions d’application de ’analogie.

CdE2:115a
11.9




Etablir I'expression de la résistance thermique
d’un cylindre calorifugé latéralement.

cartésiennes.

Exploiter des associations de résistances CdE2 :12.13;
thermiques en série ou en parall¢le. 12.14

ARQS, analogie ¢€lectrocinétique avec | Mettre en évidence un temps caractéristique CdE2:11.11

un circuit RC. d’évolution de la température. et 11.12
Justifier I’ARQS.
Etablir 1’analogie avec un circuit électrique
RC.

2.2.4. Ondes thermiques

Relation de dispersion. Etablir la relation de dispersion des ondes
thermiques en géométrie unidirectionnelle.

Effet de peau thermique. Mettre en évidence le déphasage li¢ a la
propagation.
Etablir une distance caractéristique
d’atténuation.

Appendice 2 : outils mathématiques
Notions et contenus Capacités exigibles
1% année : 3.Fonctions
Dérivée. Notation dx/dt. Utiliser la formule de Taylor a I'ordre un ou
deux ; interpréter graphiquement.
4. Géométrie (rappels de 1ére année)
Vecteurs et systeme de coordonnées | Exprimer les coordonnées d’un vecteur CdE1:10.6;
http.//ressources.univ- dans unebase orthonormée. 10.7
lemans.fr/AccesLibre/UM/Pedago/physi | Utiliser les systemes de coordonnees
que/02/meca/reperes.html cartésiennes, cylindriques et sphériques.
Longueurs, aires et volumes Citer les expressions du périmétre d’'un cercle,
classiques. de l'aire d’un disque, de I'aire d’'une sphére, du
volume d’une boule, du volume d’un cylindre.

1. Analyse vectorielle (2& année)

Gradient. Exprimer les composantes du gradient en CdE2:1.1et
coordonnée cartésiennes. 1.2

Divergence. Exprimer la divergence en coordonnées CdE2:1.7
cartésiennes.

. , : Définir le laplacien a l'aide de la

Laplacien d’'un champ scalaire. . .
divergence et du gradient.
Exprimer le laplacien en coordonnées CdE2:1.14
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1. Modes de transfert thermique

Conduchion
Caonveciion <

Rayonnament

1. Conduction ou diffusion thermique

Il s’agit d’un déplacement d'énergie de proche en proche dans la matiére macroscopiquement
immobile.

Soit une barre chauffée a son extrémité :

| La chaleur se propage de proche en proche dans la
! >« barre.

La température de la barre dépend a priori de

I’abscisse x et du temps t, T(x, t). La barre, qui présente une inhomogénéité de température, est un
systeme hors équilibre thermodynamique. On va étudier I’évolution de ce systeme.
La conduction thermique s’effectue de proche en proche dans des régions ou existent un gradient de
température. La chaleur se propage des zones de température €levée vers les zones de faible de
température.

Interprétation microscopique de la diffusion thermique :

Dans un métal, on interpréte le phénomene de conduction thermique par une augmentation
locale de I’agitation thermique des atomes par chauffage. Cette augmentation de I’agitation
thermique est transférée de proche en proche par un mécanisme faisant intervenir les électrons
libres du métal. Les métaux, bons conducteurs d’électricité, sont aussi bons conducteurs de chaleur.

Les solides non métalliques (bois, verre...) sont des isolants €lectriques et thermiques,
I’interprétation de la diffusion thermique dans ce cas est une théorie complexe qui nécessite
’utilisation de la mécanique quantique.

Les liquides et les gaz ont une conductivité thermique faible dont I’interprétation
microscopique ressort du domaine de la physique statistique.

2. Convection



I1 s’agit d’un transfert thermique avec un mouvement macroscopique d’un fluide hors équilibre.

. , , Mn _ PM .
Comme la masse volumique d’un gaz dépend de la température, (p = % = 7n = Edans le modele

du gaz parfait), les gaz chauds sont moins denses que les gaz froids, ce qui explique les
mouvements convectifs de I’air dans une piéce fermée, ou I’air chaud a tendance a monter. Ainsi, a
proximité d’un radiateur 1’air chaud a tendance a monter et il est remplacé par de 1’air froid. C’est
ce mouvement convectif de I’air qui finira par uniformiser la température de la picce.

La convection forcée est utilisée pour réchauffer ou refroidir des fluides, dans des échangeurs
thermiques. Dans ce cas, on parle d’échanges conducto-convectifs, car il existe un phénoméne de
conduction a travers les parois de 1’échangeur.

3. Rayonnement thermique

Le soleil émet un rayonnement électromagnétique, appelé rayonnement thermique qui ne
nécessite pas de milieu matériel pour se propager. Tous les corps émettent un tel rayonnement.

L’étude du rayonnement thermique a occupé une place centrale dans 1’évolution de la
physique théorique.
La théorie du rayonnement ¢lectromagnétique élaborée formellement au cours du XIXe¢ Siécle par
Maxwell, suppose que les échanges énergétiques réalisés entre maticre et onde électromagnétique
peuvent prendre toutes les valeurs, de manicre continue, sans limite inférieure, or cette hypothése ne
permettait pas d’expliquer les caractéristiques spectrales du rayonnement thermique.
Afin de lever cette ambiguité, Max Planck introduit en 1900 une « quantification » des échanges
énergétiques entre la maticre et le rayonnement. Ce quantum d’énergie est I’énergie du photon
E =hv, ou v est la fréquence de 1’onde ¢lectromagnétique, et h la constante de Planck.
C’est la naissance de la physique quantique.
Planck a étudié I’absorption du rayonnement par la matiére via un absorbeur intégral, le corps noir.

I1. Hypothéses et modélisation des transferts thermiques

1. Equilibre thermodvnamique local

D’une manicre générale les phénomenes de transfert mettent en jeu des systémes hors équilibre, par
exemple de température non uniforme, on supposera cependant toujours que 1’équilibre
thermodynamique est réalisé localement, ¢’est a dire qu’en chaque point M du systéme, a chaque
instant t, on peut définir localement les grandeurs intensives de température T(M, t) , de pression
P(M,t) , de masse volumique u(M,t).

2. Notions de flux et de vecteur densité de flux thermique

chaud froid

W =
— barre

transfert thermique

Sl métallique
par conduction




Flux thermique ou puissance thermique @(t) = transfert thermique qui traverse S par unité de
temps. C’est un débit de chaleur (J.s'' = W)

5 ;
o0 =P = o= [[ F5010.48
S

Jo (M, t) vecteur densité de courant thermique (en W.m™)

Rappel : les 3 systemes de coordonnées
http://ressources.univ- oot
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Diffusion unidirectionnelle axiale : jo(M,t) = jo(x,t) uy et o(x,t) = jo(x,t).S

Diffusion unidirectionnelle radiale cylindrique : S(r) = surface latérale d’un cylindre de hauteur h
oM, D) = jo(r, 0% et (r, ) = jo(r,0).ST) = jo(r,H2xrh

Diffusion unidirectionnelle radiale sphérique : S(r) = surface d’une sphere de rayon r
JoM,t) = jo(r, ) uy et p(r,t) = jo(r,t).S(r) = jo(r,t)4nr>

3. Enoncé de la loi de Fourier (Joseph Fourier 1768 — 1830)

Dans les phénomenes de diffusion thermique la chaleur se propage spontanément des zones de
température €levée vers les zones de faible température.

Ce phénomene de transport est régi par la loi expérimentale de Fourrier :

Jo(M,t) = —Agrad T(M,t)

—

gradT = cause - Jo = conséquence

T est la température au point M a I’instant t (en K ou °C)
A est le coefficient de conductivité thermique, qui dépend du milieu.

_ Lol _ wm= _ -1 p-1
[A’]_[grad,r]_ 5 _W-m .K .

Diffusion unidirectionnelle axiale : jo(x,t) = - x_—aT(x't)

aT (r,t)
ar

Diffusion unidirectionnelle radiale cylindrique : jo(r,t) = - A.

oT(r,t)

Diffusion unidirectionnelle radiale sphérique jo(r,t) = - A. p
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Quelques ordres de grandeur

Conductivité Capacité Masse Diffusivité
thermique thermique volumique thermique
massique 1
A ) u =
(W.m K1) P (kg.m™) ucp
(JK'kg") (m%.s™)
métaux liquides 1a10° 10° 2.10*a2.10* 10210
liquides organiques 0,15 8.10%a3.10° 10° 1083107
sels fondus 107210 102 2 4.10° 2.10° 107
huiles silicones 1074107 1,5a10° 103 10"
eau 0,4 4.10° 10° 107
verre fondu 102 0,8.10° 2,8.10° 10
air (a 300 K sous 1 bar) 2,6.102 10° 1,29 2,24.107

On retiendra que la conductivité thermique est plus basse dans les gaz que dans les liquides.
Pour les corps condensés, elle varie de 0,15 pour le caoutchouc a 400 pour les métaux

Métaux A Gaz sous 1 A Matériaux a A Liquides A
a273 K|W.m' K']| | bara 300K | W.m' K 20°C W.m' K!'|| a20°C |W.m' K"’
Ag 418 H> 18,2.10 Verre ~1 eau 0,60
Cu 390 He 15,1.10 Bois 0,25 a Alcool 0,17
0,12 ¢thylique
Al 238 (0)} 2,68.102 Platre 0,46 Huile 0,13
minérale
Fe 82 Na 2,61.10 Laine de 0,04
Acier 60 verre
Pb 35 Ne 4,9.10° Mousse de 0,030
polyuréthane
Pt 69 Ar 1,77.10 Polystyrene | 0,0039
expansé
Ti 20 Kr 0,94.102 | | Béton brut 1,75
Inox 14 CO2 1,66.10
laiton 120
Coefficient de transfert conducto - convectif
Convection naturelle h (W.m?2K")
Gaz 5a30
Eau 100 a 1 000
Convection forcée h (W.m?2K"
Gaz 10 a 300
cau 300 a 12 000
huile 50a1 700

Métal liquide

6 000a 110000




III. Bilan énergétique : équation locale de conservation de I’énergie

1. Conduction unidirectionnelle axiale

2. Conduction unidirectionnelle radiale cvlindrigue
3. Conduction unidirectionnelle radiale sphérique
4. Généralisation a 3D

Température : T(M, t) ; u masse volumique ; ¢ capacité thermique massique
Vecteur densité de courant thermique B(M ,t)

aT . -
e+ div(jy) =0

Démonstration : premier principe appliqué a un cube élémentaire subissant une transformation
isobare : dH = 8Q

Variation d’enthalpie dans le cube élémentaire de température T :
dH =H(t+dt) — H(t) =pedxdydz(T(t + dt) — T(t)) = pedxdydz 5. dt

A

zZ dy
J@

i
dz jQ?:_‘;XHY-'_dYHZ)

|

Y

j'Qﬁ"(X.!Ynz)
Y
S,
X

Déterminons 6Q = dt [- (jou)(x,),2) + (fox )(x+dx,y,z) ] dydz +
[- Go)(x.y.2)] +(jo)(xy+dy.z) Jdxdz +
[- Go)(x.y.2)+(jo)(.y,z+dz) ] dxdy

done: 80 = - 222 dxdydzdr - 22 dvdydzds - 222 dudydzds = -(22 + agzy + 2292 dxdydza.

Et on pose 80 = divj, dxdydzdt

oT . > , aT . o
Or  dH = pcdxdydz . dt = divjy dvdydzdt  d’ou pe— + div(j,) =0
CQFD

5. Expression de I’opérateur divergent dans les différents systémes de coordonnées

Coordonnées cartésiennes

-

- - - - 0
Onpose 4 = AdX,y.2) Uy + Ay (x,y,2) Uy, + A(X,),2) uz alors divA = 9y 4 2%y | 94z

ax dy 0z’

Coordonnées cvlindriques

Onpose A = A(r,6z) uy +Ao(r,60z) ug + A«r,60z) uz alors divA = %Z—r (rd,) +

104g

04,
r 00 + 0z’

Coordonnées sphériques




Onpose 4 = AAr, 9(/)) Z,, + Adr, 6,¢) ue +A,,,(r,6l(p) Z(p alors
divA = ——(rzAr)

n6 a6 35 (56 Ag) + rsing ¢ (rA¢,)

IV. Equation de la diffusion thermique

V. Résolutions de I’équation de diffusion
1. Résistance thermique en régime stationnaire

Conduction thermique unidirectionnelle
Loi de Fourier Jo= A— T
Définition de la résistance thermique Deﬁnltlon de la conductance thermique
Rip= ZOT® o g W G = Rien W.K'!
th th
T(O)>T(L) T(L) Cas du conducteur de longueur L et de section S
1L
_> _> —_—> =
P Jo I S Ran= AS
@) L
Association en série, tous les éléments sont tous parcourus par la méme
0) _P;h, L puissance thermique Pn.
Req=2i Rj
T(O) T(L)
Association en paralléle, tous les éléments sont soumis a la
T(O) Td) méme différence de température
EE% E Pn=2; Pthl d’ou Geq 2i Gi=
P




2. Résolution numérique de I’équation de la chaleur
Fichiers : Chaleur-reseau t dt impose.py ; Chaleur2 modif2 anim Willy.py

100 | — t=200s
t = 10000 s
—— t=19800s
80 -
60 -
o
~ 40 -
20 -
D_

0.0 0.2 0.4 0.6 0.8 1.0
¥ (s)

Evolution de la température de la barre soumise a un échelon de tension a ses deux extrémités.
La température initiale de la barre est de -10°C.

3. AROS : Pu(x,t) = Pu(x + dx, t)

On considére la réponse a un échelon de température de I’extrémité en x = 0 et on observe
I’évolution de T(x,t) en fonction du temps

Tlét<to
T <Tiat>to+ At Tz
i .
X
0 L
T 1

Iy + 100s



V1. Onde thermique

Pour un vieillissement optimal le vin doit étre conservé dans des caves dont la
température optimale doit se situer tout au long de I’année entre 10°C et 14°C, alors que les variations
de la température de I’air en surface sont bien plus importantes au cours de I’année. L’objectif de
cette partie est de modéliser la variation de la température d’une cave, conséquente aux variations de
la température de ’air en surface.

1. Quelques ordres de grandeurs :

Rechercher a Mulhouse la valeur moyenne de la température annuelle, la valeur maximale ainsi que
la valeur minimale.

Mémes questions pour une belle journée d’été, sans canicule, puis pour une froide journée d’hiver.
On reportera les valeurs numériques dans le tableau ci-dessous.

Justifier qu’on peut modéliser la température de 1’air 0.i(t) par la fonction
OMax— Omi
Bair(t) = Omoy + w cos (wt + @) = Omoy + 0. cos (wt + @)
Que représente ® ?

Quelle valeur de ¢ prend-on, si on suppose qu’a t = 0, la température de I’air est maximale ?

Remplir le tableau ci-dessous avec les valeurs numériques :

Mulhouse | Omey (°C) Owmax (°C) Omin (°C) 0, (°C) Période © o (s?)

année

Belle
journée
d’'été

Froide
journée
d’hiver

2. Equation de la chaleur dans le sol :

A la date t = 0, la température de I’air étant supérieure a la température du sol, montrer que, la
température du sol, Bs01(X,t) est solution de I’équation de la chaleur.

L’axe x est descendant et a pour origine le point de contact entre I’air et le sol.

On pose D, le coefficient de diffusivité du sol. Rappeler ses unités, ainsi que son expression en
fonction de la masse volumique du sol, sa capacité thermique massique et son coefficient de diffusion.

3. Résolution de I’équation de la chaleur :

Quelle est la valeur de 0s01(x=0, t) ?

Les variations de température dans le sol étant causées par les variations de température
sinusoidales de 1’air, on va chercher pour Os01(X, t) une solution en régime sinusoidal forcé de la
forme :

Bs0l(X, t) = BsolMoy T Os0(X). cos (wt + @(x))

On pose Tsoi(X,t) = Osol(X, t) - Osolmoy = Bso(X). cos (wt + @(x))



Montrer que Tsoi(X,t) est solution de I’équation de la chaleur.

Cette équation étant linéaire, le régime étant sinusoidal forcé, on peut chercher une solution
complexe a cette équation, en posant Tsoi(X,t) = To(X).e'".

d?To(x) j

Montrer que To(X) est solution de - %w T,(x)=0.

Résoudre cette équation différentielle complexe ou vérifier que

N X N X
To(x)= A.exp((l +J) E) + B.exp(—(l +J) E)
est une solution qui convient.
Exprimer la valeur de & en fonction des données et préciser son unité.

Justifier que le probleme physique a la limite lorsque x tend vers 1’infini nécessite de prendre
A=0.

Exprimer Tsoi(X,t) = To(X).e".

Préciser le module et la phase de Tsoi(X,t), puis revenir a son expression réelle et en déduire
I’expression de Oso1(X, t) = OsoimMoy + Bs0(X). cOs (wt + @ (x))

Donner les expressions de Osoimoy, Os0(X) €t ¢ (x) en fonction des données.

4. Onde thermique
Quelle est 'amplitude de 0s01(x,t) ? Est-elle constante ? Si I'amplitude décroit avec la
distance, le milieu est dit absorbant, est-ce le cas ? Qu’appelle-t-on distance
caractéristique d’absorption ou profondeur de peau ?

Justifier que la quantité cos(mt - x/d ) représente une onde progressive. Quelle est sa
direction ? Quelle est sa vitesse v ? L’exprimer en fonction de 6 et o, puis en fonction de D
et . Si la vitesse dépend de la fréquence, le milieu est dit dispersif, est-ce le cas ?

Une onde sinusoidale progressive est proportionnelle a cos(wt — kx) ou k est le nombre
d’onde.

Par définition, la relation k(®) est appelée relation de dispersion
Donner la relation de dispersion de 1’onde thermique.

5. Application numérique

Pour le sol D = 10° m?s’!, calculer §, v ainsi que la longueur d’onde, pour les cas évoqués
précédemment.

Dans une cave a 2m de profondeur, calculer le temps caractéristique de diffusion et le
comparer aux périodes des phénomeénes envisagés. Justifier que ce probléme ne peut pas se traiter
dans la cadre de I’ARQS.

Si le minimum de la température de I’air est pergu le 1* janvier, a quelle date ce minimum
est-il percu dans la cave ? Comparer I’amplitude de la température dans la cave a celle de I’air.

Mémes questions si le minimum de température est per¢u & minuit.




