
PHÉNOMENES DE TRANSPORT  Chapitre 1 : conduction thermique 

Notions et contenus Capacités exigibles CdE 

2. 2. Transfert thermique par conduction  

2.2.2. Équation de la diffusion thermique  

Les différents modes de transfert 

thermique : diffusion, convection et 

rayonnement. 

Décrire les 3 modes de transfert thermique  

Flux thermique. Vecteur densité de 

courant thermique 𝒋𝑄⃗⃗  ⃗. 
Exprimer le flux thermique comme le flux du 

vecteur 𝒋𝑄⃗⃗  ⃗ à travers une surface orientée. 

CdE 2 : 11.1 ; 

12.1  

Équilibre thermodynamique local. Enoncer l’hypothèse de l’équilibre 

thermodynamique local.  

Utiliser les champs scalaires intensifs 

(volumiques ou massiques) associés à des 

grandeurs extensives de la thermodynamique. 

 

Loi de Fourier. Énoncer et utiliser la loi de Fourier.  

Citer quelques ordres de grandeur de 

conductivité thermique dans les conditions 

usuelles : air, eau, béton, acier. 

CdE2 : 12.2 ; 

12.3 

Bilan d’énergie. Etablir, pour un milieu évoluant à volume 

constant, l’équation locale traduisant le 

premier principe dans le cas d’un problème ne 

dépendant qu’une d’une seule coordonnée 

d’espace en coordonnées cartésiennes, 

cylindriques et sphériques.  

Utiliser une généralisation admise en 

géométrie quelconque en utilisant l’opérateur 

divergence et son expression fournie. 

CdE 2 : 11.1 

Équation de la diffusion thermique. Établir l’équation de diffusion thermique, 

avec ou sans terme source. 

Analyser une équation de diffusion en ordre 

de grandeur pour relier des échelles 

caractéristiques spatiale et temporelle. 

Relier l’équation de diffusion à 

l’irréversibilité temporelle du phénomène. 

 
Capacité numérique : à l’aide d’un 

langage de programmation, résoudre 

l’équation de la diffusion thermique à une 

dimension par une méthode des 

différences finies dérivée de la méthode 

d’Euler explicite de résolution des 

équations différentielles      ordinaires. 

CdE 2 : 11.2 ; 

12.9 à 12.12 

 

CdE 2 : 11.3 

Conditions aux limites. Exploiter la continuité du flux thermique. 

Exploiter la continuité de la température pour 

un contact thermique parfait. 

Utiliser la relation de Newton (fournie) à 

l’interface solide-fluide. 

CdE2 : 12.4 à 

12.6 

2.2.3. Régime stationnaire, ARQS   

Résistance ou conductance thermique. Définir la notion de résistance thermique par 

analogie avec l’électrocinétique et énoncer les 

conditions d’application de l’analogie. 

CdE 2 : 11.5 à 

11.9 

 

 



Établir l'expression de la résistance thermique 

d’un cylindre calorifugé latéralement. 

Exploiter des associations de résistances 

thermiques en série ou en parallèle. 

 

 

CdE2 :12.13 ; 

12.14 

ARQS, analogie électrocinétique avec 

un circuit RC. 

Mettre en évidence un temps caractéristique 

d’évolution de la température.  

Justifier l’ARQS.  

Établir l’analogie avec un circuit électrique 

RC. 

CdE 2 : 11.11 

et 11.12 

2.2.4. Ondes thermiques   

Relation de dispersion. Établir la relation de dispersion des ondes 

thermiques en géométrie unidirectionnelle. 

 

Effet de peau thermique. Mettre en évidence le déphasage lié à la 

propagation. 

Établir une distance caractéristique 

d’atténuation. 

 

 
Appendice 2 : outils mathématiques 

Notions et contenus Capacités exigibles  

1ère année : 3.Fonctions   

Dérivée. Notation dx/dt.  Utiliser la formule de Taylor à l’ordre un ou 
deux ; interpréter graphiquement.  

 

4. Géométrie (rappels de 1ère année)  

Vecteurs et système de coordonnées 

http://ressources.univ-
lemans.fr/AccesLibre/UM/Pedago/physi
que/02/meca/reperes.html 

Exprimer les coordonnées d’un vecteur 
dans une base orthonormée. 
Utiliser les systèmes de coordonnées 
cartésiennes, cylindriques et sphériques. 

CdE1 : 10.6 ; 
10.7 

Longueurs, aires et volumes 
classiques. 

Citer les expressions du périmètre d’un cercle, 
de l’aire d’un disque, de l’aire d’une sphère, du 
volume d’une boule, du volume d’un cylindre. 

 

1. Analyse vectorielle (2è année)  

Gradient. Exprimer les composantes du gradient en  
coordonnée cartésiennes. 

CdE 2 : 1.1 et 
1.2 

Divergence. 
 

 
 
 

Laplacien d’un champ scalaire. 

 
 

Exprimer la divergence en coordonnées 
cartésiennes. 

 
 

Définir le laplacien à l’aide de la 

divergence et du  gradient. 

Exprimer le laplacien en coordonnées 

cartésiennes. 

CdE2 : 1.7 

 

 

 

CdE 2 : 1.14 
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I.  Modes de transfert thermique 

 
 

 1. Conduction ou diffusion thermique 

 

Il s’agit d’un déplacement d'énergie de proche en proche dans la matière macroscopiquement 

immobile. 

 

Soit une barre chauffée à son extrémité : 

La chaleur se propage de proche en proche dans la 

barre.  

La température de la barre dépend à priori de 

l’abscisse x et du temps t, T(x, t). La barre, qui présente une inhomogénéité de température, est un 

système hors équilibre thermodynamique. On va étudier l’évolution de ce système.  

La conduction thermique s’effectue de proche en proche dans des régions où existent un gradient de 

température. La chaleur se propage des zones de température élevée vers les zones de faible de 

température. 

 

Interprétation microscopique de la diffusion thermique :  

 

Dans un métal, on interprète le phénomène de conduction thermique par une augmentation 

locale de l’agitation thermique des atomes par chauffage. Cette augmentation de l’agitation 

thermique est transférée de proche en proche par un mécanisme faisant intervenir les électrons 

libres du métal. Les métaux, bons conducteurs d’électricité, sont aussi bons conducteurs de chaleur. 

  

Les solides non métalliques (bois, verre…) sont des isolants électriques et thermiques, 

l’interprétation de la diffusion thermique dans ce cas est une théorie complexe qui nécessite 

l’utilisation de la mécanique quantique. 

 

Les liquides et les gaz ont une conductivité thermique faible dont l’interprétation 

microscopique ressort du domaine de la physique statistique. 

 

 

2. Convection 

 

x 



Il s’agit d’un transfert thermique avec un mouvement macroscopique d’un fluide hors équilibre. 

 

Comme la masse volumique d’un gaz dépend de la température, (𝜌 =
𝑚

𝑉
=
𝑀𝑛

𝑉
=
𝑃𝑀

𝑅𝑇
dans le modèle 

du gaz parfait), les gaz chauds sont moins denses que les gaz froids, ce qui explique les 

mouvements convectifs de l’air dans une pièce fermée, où l’air chaud à tendance à monter. Ainsi, à 

proximité d’un radiateur l’air chaud à tendance à monter et il est remplacé par de l’air froid. C’est 

ce mouvement convectif de l’air qui finira par uniformiser la température de la pièce. 

 

La convection forcée est utilisée pour réchauffer ou refroidir des fluides, dans des échangeurs 

thermiques. Dans ce cas, on parle d’échanges conducto-convectifs, car il existe un phénomène de 

conduction à travers les parois de l’échangeur. 

 

 3. Rayonnement thermique 

 

 Le soleil émet un rayonnement électromagnétique, appelé rayonnement thermique qui ne 

nécessite pas de milieu matériel pour se propager. Tous les corps émettent un tel rayonnement. 

 

 L’étude du rayonnement thermique a occupé une place centrale dans l’évolution de la 

physique théorique.  

La théorie du rayonnement électromagnétique élaborée formellement au cours du XIXè Siècle par 

Maxwell, suppose que les échanges énergétiques réalisés entre matière et onde électromagnétique 

peuvent prendre toutes les valeurs, de manière continue, sans limite inférieure, or cette hypothèse ne 

permettait pas d’expliquer les caractéristiques spectrales du rayonnement thermique. 

Afin de lever cette ambiguïté, Max Planck introduit en 1900 une « quantification » des échanges 

énergétiques entre la matière et le rayonnement. Ce quantum d’énergie est l’énergie du photon  

E = h, où  est la fréquence de l’onde électromagnétique, et h la constante de Planck. 

C’est la naissance de la physique quantique. 

Planck a étudié l’absorption du rayonnement par la matière via un absorbeur intégral, le corps noir. 

 

II. Hypothèses et modélisation des transferts thermiques 

 

1. Equilibre thermodynamique local 

 

D’une manière générale les phénomènes de transfert mettent en jeu des systèmes hors équilibre, par 

exemple de température non uniforme, on supposera cependant toujours que l’équilibre 

thermodynamique est réalisé localement, c’est à dire qu’en chaque point M du système, à chaque 

instant t, on peut définir localement les grandeurs intensives de température T(M, t) , de pression 

P(M,t) , de masse volumique µ(M,t). 

 

2. Notions de flux et de vecteur densité de flux thermique 

 

 

 



Flux thermique ou puissance thermique (t) = transfert thermique qui traverse S par unité de 

temps. C’est un débit de chaleur (J.s-1 = W) 

 

𝜑(𝑡) = 𝑃(𝑡) =  
𝛿𝑄

𝑑𝑡
= ∬ 𝑗𝑄⃗⃗  ⃗(𝑀, 𝑡). 𝑑𝑆 

𝑆

 

 

𝑗𝑄⃗⃗  ⃗(𝑀, 𝑡) vecteur densité de courant thermique (en W.m-2)  

 

 

Rappel : les 3 systèmes de coordonnées  

http://ressources.univ-

lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/reperes.html 

 

 

Diffusion unidirectionnelle axiale : 𝑗𝑄⃗⃗  ⃗(𝑀, 𝑡) = 𝑗𝑄(𝑥, 𝑡) 𝑢𝑥⃗⃗⃗⃗  et 𝜑(𝑥, 𝑡) = 𝑗𝑄(𝑥, 𝑡). 𝑆 

 

Diffusion unidirectionnelle radiale cylindrique : S(r) = surface latérale d’un cylindre de hauteur h 

𝑗𝑄⃗⃗  ⃗(𝑀, 𝑡) = 𝑗𝑄(𝑟, 𝑡) 𝑢𝑟⃗⃗⃗⃗  et 𝜑(𝑟, 𝑡) = 𝑗𝑄(𝑟, 𝑡). 𝑆(𝑟) = jQ(r,t)2rh 

 

Diffusion unidirectionnelle radiale sphérique : S(r) = surface d’une sphère de rayon r 

𝑗𝑄⃗⃗  ⃗(𝑀, 𝑡) = 𝑗𝑄(𝑟, 𝑡) 𝑢𝑟⃗⃗⃗⃗  et 𝜑(𝑟, 𝑡) = 𝑗𝑄(𝑟, 𝑡). 𝑆(𝑟) = jQ(r,t)4r2 

  

 

3. Enoncé de la loi de Fourier (Joseph Fourier 1768 – 1830) 

 

Dans les phénomènes de diffusion thermique la chaleur se propage spontanément des zones de 

température élevée vers les zones de faible température.  

 

Ce phénomène de transport est régi par la loi expérimentale de Fourrier : 

 

 

 

 

𝑔𝑟𝑎𝑑

  
→  

𝑇 = cause  →   𝑗 𝑄 = conséquence 

 

T est la température au point M à l’instant t (en K ou °C) 

 est le coefficient de conductivité thermique, qui dépend du milieu. 

[𝜆] =
[𝑗𝑄]

[𝑔𝑟𝑎𝑑𝑇]
=

𝑊.𝑚−2

𝐾

𝑚

= 𝑊.𝑚−1. 𝐾−1 . 

 

Diffusion unidirectionnelle axiale : jQ(x,t) = - .
𝜕𝑇(𝑥,𝑡)

𝜕𝑥
  

 

Diffusion unidirectionnelle radiale cylindrique : jQ(r,t) = - .
𝜕𝑇(𝑟,𝑡)

𝜕𝑟
 

 

Diffusion unidirectionnelle radiale sphérique jQ(r,t) = - .
𝜕𝑇(𝑟,𝑡)

𝜕𝑟
 

 

 

 

𝑗 𝑄(𝑀, 𝑡) = −𝜆𝑔𝑟𝑎𝑑

  
→  

 𝑇(M,t) 
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Quelques ordres de grandeur 

 Conductivité 

thermique 

 

(W.m-1.K-1) 

Capacité 

thermique 

massique 

cP 

(J.K-1.kg-1) 

Masse 

volumique 

µ 

(kg.m-3) 

Diffusivité 

thermique 

𝜅 =
𝜆

𝜇𝑐𝑃
 

(m2.s-1) 

métaux liquides 1 à 102 103 2.103 à 2.104 10-6 à 10-4 

liquides organiques 0,15 8.102 à 3.103 103 10-8 à 10-7 

sels fondus 10-7 à 10-6 10-3 à 4.10-3 2.103 10-7 

huiles silicones 10-7 à 10-3 1,5 à 103 103 10-11 

eau 0,4 4.103 103 10-7 

verre fondu 10-2 0,8.103 2,8.103 10-6 

air (à 300 K sous 1 bar) 2,6.10-2 103 1,29 2,24.10-5 

On retiendra que la conductivité thermique est plus basse dans les gaz que dans les liquides. 

Pour les corps condensés, elle varie de 0,15 pour le caoutchouc à 400 pour les métaux 

 

Métaux 

à 273 K 
  

W.m-1.K-1 

 Gaz sous 1 

bar à 300K 
  

W.m-1.K-1 

 Matériaux à 

20°C 
  

W.m-1.K-1 

 Liquides 

à 20°C 
  

W.m-1.K-1 

Ag 418  H2 18,2.10-2  Verre  1  eau 0,60 

Cu 390  He 15,1.10-2  Bois 0,25 à 

0,12 

 Alcool 

éthylique 

0,17 

Al 238  O2 2,68.10-2  Plâtre 0,46  Huile 

minérale 

0,13 

Fe 

Acier 

82 

60 

 N2 2,61.10-2  Laine de 

verre 

0,04    

Pb 35  Ne 4,9.10-2  Mousse de 

polyuréthane 

0,030    

Pt 69  Ar 1,77.10-2  Polystyrène 

expansé 

0,0039    

Ti 20  Kr 0,94.10-2  Béton brut 1,75    

Inox 14  CO2 1,66.10-2       

laiton 120          

 

Coefficient de transfert conducto - convectif 

Convection naturelle  h (W.m-2.K-1) 

 Gaz 5 à 30 

 Eau 100 à 1 000 

 

Convection forcée  h (W.m-2.K-1) 

 Gaz 10 à 300 

 eau 300 à 12 000 

 huile 50 à 1 700 

 Métal liquide 6  000 à 110 000 

 

 

  



III. Bilan énergétique : équation locale de conservation de l’énergie 

 

1. Conduction unidirectionnelle axiale 

2. Conduction unidirectionnelle radiale cylindrique 

3. Conduction unidirectionnelle radiale sphérique 

4. Généralisation à 3D 

 

Température : T(M, t) ; µ masse volumique ; c capacité thermique massique 

Vecteur densité de courant thermique 𝑗𝑄⃗⃗  ⃗(𝑀, 𝑡)   

    

𝜇𝑐
𝜕𝑇

𝑑𝑡
+ 𝑑𝑖𝑣(𝑗 𝑄) = 0 

 

Démonstration : premier principe appliqué à un cube élémentaire subissant une transformation 

isobare : dH = Q 

Variation d’enthalpie dans le cube élémentaire de température T :  

dH =H(t+dt) – H(t) =µcdxdydz(T(t + dt) −  T(t)) = µcdxdydz 
𝜕𝑇

𝜕𝑡
. 𝑑𝑡 

 

Déterminons Q =  dt [- (jQx)(x,y,z) + (jQx )(x+dx,y,z) ] dydz +  

 [- (jQy)(x,y,z)] +( jQy)(x,y+dy,z) ]dxdz + 

 [- (jQz)(x,y,z)+( jQz)((,y,z+dz) ] dxdy 

 

donc: Q = - 
𝜕𝑗𝑄𝑥

𝜕𝑥
 dxdydzdt - 

𝜕𝑗𝑄𝑦

𝜕𝑥
 dxdydzdt - 

𝜕𝑗𝑄𝑧

𝜕𝑥
 dxdydzdt = -(

𝜕𝑗𝑄𝑥

𝜕𝑥
+
𝜕𝑗𝑄𝑦

𝜕𝑦
+
𝜕𝑗𝑄𝑧

𝜕𝑧
) dxdydzdt. 

Et on pose  Q = div𝑗 𝑄 dxdydzdt 

 

Or  dH = µcdxdydz 
𝜕𝑇

𝜕𝑡
. 𝑑𝑡 = div𝑗 𝑄 dxdydzdt  d’où            𝜇𝑐

𝜕𝑇

𝑑𝑡
+ 𝑑𝑖𝑣(𝑗 𝑄) = 0 

CQFD 

 

5. Expression de l’opérateur divergent dans les différents systèmes de coordonnées 

 

Coordonnées cartésiennes 

On pose A
→

 = Ax(x,y,z) 𝑢
→

𝑥 + Ay (x,y,z) 𝑢
→

𝑦 + Az(x,y,z) uz
→

 alors   𝑑𝑖𝑣𝐴
→

=
𝜕𝐴𝑥

𝜕𝑥
+
𝜕𝐴𝑦

𝜕𝑦
+
𝜕𝐴𝑧

𝜕𝑧
. 

  

 Coordonnées cylindriques 

On pose A
→

 = Ar(r,,z) ur
→

 + A (r,,z) u
→

 + Az(r,,z) uz
→

   alors 𝑑𝑖𝑣𝐴
→

=
1

𝑟

𝜕  

𝜕𝑟
(𝑟𝐴𝑟) +

1

𝑟

𝜕𝐴𝜃

𝜕𝜃
+
𝜕𝐴𝑧

𝜕𝑧
. 

  

 Coordonnées sphériques 



On pose  A
→

 = Ar(r,,) ur
→

 + A(r,,) u
→

 + A(r,,) u
→

    alors 

 𝑑𝑖𝑣𝐴
→

=
1

𝑟2
𝜕  

𝜕𝑟
(𝑟2𝐴𝑟) +

1

𝑟 𝑠𝑖𝑛 𝜃

𝜕  

𝜕𝜃
(𝑠𝑖𝑛 𝜃 𝐴𝜃) +

1

𝑟 𝑠𝑖𝑛 𝜃
 
𝜕

𝜕𝜙
(𝑟𝐴𝜙). 

 

IV. Equation de la diffusion thermique 

 

 

 

 

V. Résolutions de l’équation de diffusion  

1. Résistance thermique en régime stationnaire 

Conduction thermique unidirectionnelle 

Loi de Fourier           𝒋𝑸⃗⃗  ⃗ = -𝜆
𝑑𝑇

𝑑𝑥
𝑢𝑥⃗⃗⃗⃗  

Définition de la résistance thermique                               Définition de la conductance thermique 

Rth = 
𝑇(𝑂)−𝑇(𝐿)

𝑃𝑡ℎ
 en K.W -1                                                                             Gth = 

1

𝑅𝑡ℎ
en W.K-1 

Cas du conducteur de longueur L et de section S 

Rth = 
1

𝜆

𝐿

𝑆
 

Association en série, tous les éléments sont tous parcourus par la même 

puissance thermique Pth. 

Réq = i Ri   

 

Association en parallèle, tous les éléments sont soumis à la 

même différence de température 

Pth = 𝛴𝑖𝑃𝑡ℎ𝑖   d’où Géq = i Gi = i
1

𝑅𝑖
 

 

  

Pth 

x 
O L 

T(O)>T(L) T(L) 

𝒋𝑸⃗⃗  ⃗ S 

T(O)  

Pth O L 

T(L)  



 

2. Résolution numérique de l’équation de la chaleur 

Fichiers :  Chaleur-reseau_t_dt_impose.py ; Chaleur2_modif2_anim_Willy.py 

 

 
 

Evolution de la température de la barre soumise à un échelon de tension à ses deux extrémités. 

La température initiale de la barre est de -10°C. 

 

3. ARQS : Pth(x,t) = Pth(x + dx, t) 

 

On considère la réponse à un échelon de température de l’extrémité en x = 0 et on observe 

l’évolution de T(x,t) en fonction du temps 

 

 

 

 

 

 

 

  

0 L 0 L 

x 

0 
L 

T1 à t < to 

T’1 < T1  à t > to + t T2 



VI. Onde thermique 

  Pour un vieillissement optimal le vin doit être conservé dans des caves dont la 

température optimale doit se situer tout au long de l’année entre 10°C et 14°C, alors que les variations 

de la température de l’air en surface sont bien plus importantes au cours de l’année. L’objectif de 

cette partie est de modéliser la variation de la température d’une cave, conséquente aux variations de 

la température de l’air en surface. 

1. Quelques ordres de grandeurs : 

Rechercher à Mulhouse la valeur moyenne de la température annuelle, la valeur maximale ainsi que 

la valeur minimale. 

Mêmes questions pour une belle journée d’été, sans canicule, puis pour une froide journée d’hiver.  

On reportera les valeurs numériques dans le tableau ci-dessous. 

Justifier qu’on peut modéliser la température de l’air air(t) par la fonction  

air(t) = moy + 
𝜃𝑀𝑎𝑥− 𝜃𝑚𝑖𝑛

2
. cos (𝜔𝑡 +  𝜑) = moy + . cos (𝜔𝑡 +  𝜑) 

Que représente  ? 

Quelle valeur de  prend-on, si on suppose qu’à t = 0, la température de l’air est maximale ?  

Remplir le tableau ci-dessous avec les valeurs numériques : 

Mulhouse moy (°C) Max (°C) min (°C)  (°C) Période   (s-1) 

année       

Belle 
journée 
d’été 

      

Froide 
journée 
d’hiver 

      

 

2. Equation de la chaleur dans le sol : 

A la date t = 0, la température de l’air étant supérieure à la température du sol, montrer que, la 

température du sol, sol(x,t) est solution de l’équation de la chaleur. 

L’axe x est descendant et à pour origine le point de contact entre l’air et le sol. 

On pose D, le coefficient de diffusivité du sol. Rappeler ses unités, ainsi que son expression en 

fonction de la masse volumique du sol, sa capacité thermique massique et son coefficient de diffusion. 

3. Résolution de l’équation de la chaleur : 

Quelle est la valeur de sol(x=0, t) ?  

Les variations de température dans le sol étant causées par les variations de température 

sinusoïdales de l’air, on va chercher pour sol(x, t) une solution en régime sinusoïdal forcé de la 

forme : 

sol(x, t) = solMoy + so(x). cos (𝜔𝑡 +  𝜑(𝑥)) 
 

On pose Tsol(x,t) = sol(x, t) - solMoy = so(x). cos (𝜔𝑡 +  𝜑(𝑥)) 

 



Montrer que Tsol(x,t) est solution de l’équation de la chaleur. 

Cette équation étant linéaire, le régime étant sinusoïdal forcé, on peut chercher une solution 

complexe à cette équation, en posant Tsol(x,t) = To(x).ejt. 

 

Montrer que To(x) est solution de 
𝑑2𝑇𝑜(𝑥)

𝑑𝑥2
−
𝑗𝜔

𝐷
𝑇𝑜(𝑥)= 0. 

 

Résoudre cette équation différentielle complexe ou vérifier que  

To(x)= A.exp((1 + 𝑗)
𝑥

𝛿
) + B.exp(−(1 + 𝑗)

𝑥

𝛿
)  

est une solution qui convient. 

Exprimer la valeur de  en fonction des données et préciser son unité. 

Justifier que le problème physique à la limite lorsque x tend vers l’infini nécessite de prendre 

A = 0. 

 

Exprimer Tsol(x,t) = To(x).ejt. 

Préciser le module et la phase de Tsol(x,t), puis revenir à son expression réelle et en déduire 

l’expression de sol(x, t) = solMoy + so(x). cos (𝜔𝑡 +  𝜑(𝑥)) 
 

Donner les expressions de solMoy, so(x) et 𝜑(𝑥) en fonction des données. 

 

4. Onde thermique 
Quelle est l’amplitude de sol(x,t) ? Est-elle constante ? Si l’amplitude décroit avec la 
distance, le milieu est dit absorbant, est-ce le cas ? Qu’appelle-t-on distance 
caractéristique d’absorption ou profondeur de peau ? 
 
Justifier que la quantité cos(t – x/ ) représente une onde progressive. Quelle est sa 
direction ? Quelle est sa vitesse v ? L’exprimer en fonction de  et , puis en fonction de D 
et  Si la vitesse dépend de la fréquence, le milieu est dit dispersif, est-ce le cas ?  
 
Une onde sinusoïdale progressive est proportionnelle à cos(t – kx) où k est le nombre 

d’onde.  

 

Par définition, la relation k() est appelée relation de dispersion  

Donner la relation de dispersion de l’onde thermique. 

  

5. Application numérique 

Pour le sol D = 10-6 m2 s-1, calculer  v ainsi que la longueur d’onde, pour les cas évoqués 

précédemment. 

Dans une cave à 2m de profondeur, calculer le temps caractéristique de diffusion et le 

comparer aux périodes des phénomènes envisagés. Justifier que ce problème ne peut pas se traiter 

dans la cadre de l’ARQS. 

Si le minimum de la température de l’air est perçu le 1er janvier, à quelle date ce minimum 

est-il perçu dans la cave ? Comparer l’amplitude de la température dans la cave à celle de l’air. 

Mêmes questions si le minimum de température est perçu à minuit. 


