ELECTROMAGNETISME Chapitre 1 : Electrostatique

Notions et contenus|

Capacités exigibles

CdE

4.1. Symétries du champs électrique

Symeétries pour le champ
électrique, caracterepolaire du
champ électrique.

Exploiter les symétries et invariances
d'une distribution de charges pour en
déduire des propriétés du champ
électrique

CdE2:2.4;28a2.10

4.2. Champ électrique en régime stationnaire

Equations de Maxwell-Gauss
et de Maxwell-Faraday.

Citer les équations de Maxwell-Gauss et
Maxwell-Faraday en régime variable et
en régime stationnaire.

Potentiel scalaire électrique.

Propriétés topographiques.

Equation de Poisson.

-

Relier I'existence du potentiel scalaire
électrique aucaractére irrotationnel du
champ électrique.

Exprimer une différence de potentiel
comme unecirculation du champ
électrique.

Associer 'évasement des tubes de
champ a I'évolution de la norme du
champ électrique endehors des

sources.

Représenter les lignes de champ
connaissant lessurfaces

équipotentielles et inversement.

Evaluer la valeur d’'un champ électrique &
partir d’'un réseau de surfaces
équipotentielles.

Etablir I'’équation de Poisson reliant le
potentiel a la densité volumique de
charge.
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Théoréme de Gauss.

Enoncer et appliquer le théoréme de Gauss.
Etablir le champ électrique et le potentiel
créés par une charge ponctuelle, une
distribution de charge asymétrie

sphérique, une distribution de charge a
symeétrie cylindrique.

Exploiter le théoréme de superposition.

CdE2:2.12;2.16

Distribution surfacique de charge.

Utiliser le modéle de la distribution
surfacique decharge.

Etablir le champ électrique créé par un
plan infini uniformément chargé en
surface.

CdE2:2.3:;2.5

Energie potentielle électrique d'une
charge ponctuelle dans un champ
électrique extérieur.

Etablir la relation entre I'énergie

potentielle d’'une charge ponctuelle et le
potentiel.

Appliquer le théoreme de I'énergie cinétique
a une particule chargée dans un champ
électrique.

Champ gravitationnel.

Etablir les analogies entre les champs
électrique etgravitationnel.

4.3. Condensateur




Phénomeéne d'influence Décrire qualitativement le phénoméne

électrostatique. d'influence électrostatique.

Capacité d'un condensateur plan. Déterminer | expressmn’du_ champ d’un CdE 2 : 2.18
condensateur plan en négligeant les
effets de bord.Déterminer I'expression de

Réle des isolants. Ia capaC|te ___________________________________________
Prendre en compte la permittivité du

Densité volumique d'énergie m|||eu_d'ans Fexpression de la

électrique. capaete.
Déterminer I'expression de la densité
volumique d’énergie électrique dans le
cas du condensateur plan a partir de
celle de I'énergie du condensateur.
Citer I'expression de la densité
volumique d'énergie électrique.

Rappels de premiére année : Mécanique 1
| Notions et contenus | Capacités exigibles | CdE

stationnaires

2.4. Mouvement de particules chargées dans un champs électrique uniformes et

Force de Lorentz exercée sur une
charge ponctuelle ; champs
électrique.

Puissance de la force de Lorentz.

Evaluer les ordres de grandeur de la force
électrique et la comparer a ceux des forces
gravitationnelles.

Justifier qu’un champ électrique peut
modifier 'énergie cinétique d’'une particule

CdE1:14.1514.3

CdE1:14.4

Mouvement d’'une particule
chargée dans unchamp
électrostatique uniforme.

Mettre en équation le mouvement et le
caractérisercomme un mouvement a
vecteur accélération constant.
Effectuer un bilan énergétique pour
déterminer lavaleur de la vitesse d'une
particule chargée accélérée par une
différence de potentiel.

CdE1:15.1;15.8:
15.9

Appendice 2 : outils mathématiques

Notions et contenus

| Capacités exigibles

1. Analyse vectorielle

Rotationnel.

|Citer et utiliser le théoréme de Stokes.




Les équations de Maxwell (1831 — 1879)

p(M,t)
€o

Maxwell-Gauss (1777 - 1835) : div E M, t) =

Maxwell — Thomson (1824 — 1907):
divB (M,t) = 0

_ B

—_—
Maxwell — Faraday (1791-1867) : rot E (M, t) = Y

Maxwell — Ampére (1775 — 1836) :

—= - AEM,t
rot B (M,t) =y, (]él M, t) + ¢, ;t ))
% 7 . % ’ .
E (M,t) : vecteur champ électrique en V.m* B (M, t) : vecteur champ magnétique en T (Tesla)

ﬁ
p(M,t) : densité volumique de charge en C.m3 j él (M, t): vecteur densité de courant électrique en A.m 2

€o : permittivité du vide en F.m! Wo : perméabilité du vide en H.m*

Ho€oc? = 1 ol ¢ est la vitesse de la lumiére dans le vide

ELECTROSTATIQUE : 2 équations locales. Les champs sont indépendants du temps.

Les équations locales de I’électrostatique :

Maxwell-Gauss : div E M) = @ Maxwell — Faraday : rot B M) = 0

o

l. Propriétés topographiques du champ électrique : analyse des cartes de champ :
1. Lignes de champ électrique créées par une charge ponctuelle

. . . . = 0)q(M) OM
Rappel : loi de Coulomb, expression de la force électrostatique entre deux charges : Fy(0)-qum) = q(47);ii )W




Fq(0)-am

Définition du champ électrique E(M) en M créé par une charge ponctuelle gen O : E(M) = =D

L’expression du champ électrique au point M créé par la charge q qui se trouve en O est :

—_—

=4 _ q oM =1 _ q E _ —
E(M) T 4me, (OM)3 E(T‘) T ame, 12 E(r) ur

En coordonnées sphériques : (1, 6, ¢) ; OM = ru,

Le champ électrique est un vecteur polaire car colinéaire a OM.

Le champ électrique est radial, il est colinéaire a ., il décroit en 1/r2.

Les points tels que la valeur du champ est constante se trouvent sur une sphére de rayonr.

La valeur du champ électrique ne dépend que de la coordonnée r de M.

Elle ne dépend pas des coordonnées angulaires 6 et ¢. Le champ électrique est a symétrie sphérique.

Lignes de champ électrigue : courbe orientée, tangente au champ

électrique en tout point

Des fibres fines de rayonne suspendues dans I'huile tendent a
s’aligner au voisinage d’un objet chargé.

Lignes de champ créées par une charge ponctuelle

Sites de visualisation du tracé des lignes de champ électrique :

https://phyanim.sciences.univ-nantes.fr/Elec/Champs/champE.php :

https://www.falstad.com/vector3de/




2. Lignes de champ électrique créées par deux charges identiques de méme signe.

%
Propriétés de symétrie d’un vecteur polaire E :

IIs est un plan de symétrie des charges qa et gg si les charges sont a la méme distance du plan et si ga = gs.
—_—>
Si M eIls alors E(M) € Ils.

— —>
Si P’ =sym(P) / Ils alors E(P’)=sym E(P)/ Ils

Théoréme de superposition : E(M) = Eg4(M) + Eq5(M)

—_—

Comme le plan de la feuille est un plan de symétrie des charges E(M) appartient a ce plan, donc
Py — —
EM) = E,(M)u, + Eg(M) ug

En coordonnées sphériques, M(r, 6, @) la carte de champ est la méme quel que soit ¢ donc les
composantes E,.(M)et Eq(M) du champ électrique ne dépendent pas de la coordonnée angulaire ¢ de M,
mais uniquement des coordonnées r et 0.

E(M) = E(M)u; + Eg(M) ug = E(r,0)u; + Eg(r,0) g
La distribution de charges est invariante par rotation d’angle .

Remarque : on peut faire le méme raisonnement en coordonnées cylindriques M(rcyi, 0, z)

—_—
Comme le plan de la feuille est un plan de symétrie des charges E(M) appartient a ce plan, donc

= — —
E(M) =E,(M)u; + E,(M)u,
u, est le vecteur unitaire radial cylindrique # ;. le vecteur unitaire radial sphérique

Pour donner la position d’un point en coordonnées cylindriques il faut préciser la valeur de :




r distance entre le point M et I'axe vertical z ; 6 angle entre OM et I'axe z, vertical ; O angle entre le

projeté de M sur le plan horizontal (Oxy) et I'axe Ox ; z valeur algébrique du projeté de M sur I'axe z.

La carte de champ est la méme quel que soit O donc les composantes E,.(M)et E,(M) du champ

électrique ne dépendent pas de la coordonnée angulaire de M, mais uniquement des coordonnées r et z.

_—
EM) = E,(M)u, + E,(M)w, = E.(r,2) w, + E,(r,2) u,

La distribution de charges est invariante par rotation d’angle 0.

3. Lignes de champ électrique créées par deux charges opposées = dipole électrique

q
Propriétés d’antisymétrie d’un vecteur polaire FE :

T1as est un plan d’antisymétrie des charges qga et gs si les charges sont a la méme distance du plan et si qa = - gs.

_—
SiM eIlasalors E(M) LTTs.

N —_—
Si P’ = sym(P) / T1as alors E(P)=- sym E(P)/ Tas

—_—
Comme précédemment, le plan de la feuille est un plan de symétrie des charges E (M) appartient a ce plan
4. Lignes de champ électrique créées par des charges quelconques

Figure 17.30 Représentation schématique du champ électrique
de deux charges +4Q et —Q. Noter que le champ est nul au
point P.

Le poisson éléphant
produit un champ
dipolaire et détecte
les objets proches
par leurs effets sur
ce champ




l. Les équations de I’électrostatique

Les équations locales de I’électrostatique :

- - —
Maxwell-Gauss : div E (M) = pM) Maxwell — Faraday : rot E (M)=20

€o

Les équations intégrales de I'électrostatique :

1. Théoréme de Gauss

Maxwell-Gauss -> Théoréme d’Ostrogradski -> Théoreme de Gauss

Mikhail Vassilievitch Ostrogradski (1801- 1862, Ukraine)

Interprétation géométrique (voir cartes de champ) :

- -
En dehors des charges : div E (M) =0 ; E est un vecteur a flux conservatif ; le flux de

_)
E atravers une surface fermée est nul ; dans un tube de champ : flux entrant = flux sortant,

I’évasement des lignes de champ s’interpréte par une diminution de la valeur du champ électrique.

. .2 M L . . .
En présence de charges : div E (M) = ? ; théoréme de Gauss : le flux de champ électrique a travers une

o

surface fermée est égal au rapport de la charge a I'intérieur de cette surface a la permittivité du vide.

2. Potentiel électrique

Maxwell-Faraday -> définition de la circulation d’un vecteur

a. Circulation d’un champ de vecteurs

La circulation élémentaire dC du champ vectoriel A (M,t) entre deux points voisins M et M’ tels que
MM’ = d¥ est dC = A(M,t).d ¢.

N

Le travail élémentaire est la circulation élémentaire de la force : SW = F(M,t).d ¥

La circulation du champ vectoriel 4 (M,¢) entre les points et # le long de la courbe (/) est :

B -
ckin= S AM, 0).d £,

Le travail est la circulation de la force entre et § : Wf (= ff(l“) F(M,t).d?.

La circulation du champ vectoriel A (M,?) le long la courbe fermée (/) est :
C g(j) = CI‘fermé orienté (A)) = 4%- AM,t).d?.
Le travail le long de la courbe fermée est la circulation de la force entre a et « :
Wa(r) = jg F(M,t).d ¥

r
WE(I') = 0 si la force est conservative, ¢’est-a-dire que son travail ne dépend pas du chemin suivi.



Exemples de forces conservatives :
force de pesanteur, force de gravitation, force électrostatique, force €lastique du ressort

Exemples de forces non conservatives :
Forces de frottements

George Gabriel Stokes (1819-1903)

b. Théoreme de Stockes (1849, admis) : définition de I’opérateur rotationnel

IR
Soit 4 (M,t) un champ de vecteur défini sur tout I’espace. Il existe un unique champ de vecteurs

- — >
appelé rotationnel de A4 , noté rot A tel que pour toute surface S s’appuyant sur un contour I" fermé

et orienté la circulation de 4 le long de I est égale au flux de rot 4 a travers S
C(h)  =¢Aadl=[f, (rotA).dS = oy (rotA) ndS=  @(rot A)
sur I' fermé orienté a travers S(I') ouverte
Schémas I et S
—_— > e
Remarque: rot A estun champ de vecteurs. rot (vecteur) = vecteur

c. Application en électrostatique, définition de la tension Uag

— 2 = . . ) . . =
rot E (M) = 0; la circulation du champ électrique sur un contour fermé est nulle C(E) =0,
sur I fermé,orienté

R
E est un vecteur a circulation conservative.
Comme les forces conservatives.

Si une force est conservative, il existe une fonction scalaire appelée énergie potentielle telle que

B 5 -
wphr) = j F(M,0).d ¢ = — (Ep(B) — Ep(a))
a(r)

SW =F(M,t).d ¢ =-dEp

Par analogie, on définit la fonction scalaire V, appelée potentiel électrique, telle que
dC(E)=EM).d £ =-dV
cbE =[P EM.de=[l-av=—VB) - V(@)= V(@ -V(B) = Vap

On retient que la tension Uag = C f(ﬁ) = ff E(M). d?t




d. Relation locale entre le champ et le potentiel, opérateur gradient

Le potentiel V(M) est une fonction de I'espace.

En coordonnées cartésiennes V(M) = V(x, y, z)
cccs . . v v av e e 1 . :
La différentielle de V(x, y, z) est notée dV = adx + ady + Zdz par définition d’une fonction de 3 variables
Ordv=- E(M).d?¢
Avec E(M) = E,(x,y,2) Ux + E,(x,y,2) Uy +E,(x,y,z) Uz et d £ = dx Ux+dy Uy +dz U,

Soit Z—de + Z—Zdy + Z—Zdz =-(E,xy,2).dx + E,(x,y,2). dy + E,(x,y,2).dz)

) . . 9 ) d
Par identification % =-E,(xy,2); % =-E,(x,y,2) ; a_‘; =-E,(x,y,2)

v d

Cmesny (3] (7
EM)=(E(xy2)|=- 1= 5 V(x,y,z) = —grad V(M)

y y

E2(x,y,2) v ?

9z az

9

ax

s s s , . . , , . — d

Ce qui définit 'opérateur gradient, uniquement en coordonnées cartésiennes grad = | —
dy

9
az
Relation entre le champ électrique et le potentiel électrique :

E(M) = —grad V(M) et dv=- E(M).d?¢

Les surfaces équipotentielles sont perpendiculaires aux lignes de champ

Potentiel créé par une charge ponctuelle : E(M) =-grad V(M) en coordonnées sphériques

v = L1 V)= L2

4mtey, OM 4TE, T

Potentiel créé par deux charges ponctuelles : théoreme de superposition

qqa 1 n qp 1
e, AM  4me, BM

V(M) = Vga(M) + Vgp(M) =

Potentiel créé par deux charges ponctuelles : E(M) =-grad V(M) =- grad V(r,z) en coordonnées
ov(r,z) ov(r,z)

o et E,(r,z) = — 5y

cylindriques : E.(r,z) = —



e. Tracé des surfaces équipotentielles et des lighes de champs
http://www.sciences.univ-nantes.fr/sites/genevieve tulloue/Elec/Champs/
Visualisation lignes de champ en3D https://www.falstad.com/vector3de/

Charge ponctuelle positive, la différence de

potentiel est de 10 V entre chaque Deux charges positives identiques, la
équipotentielle différence de potentiel est de 5V
:entielle

Dipole électrostatique : la différence de potentiel entre chaque équipotentielle est de 5V

Plus les équipotentielles sont rapprochées pour une méme différence de potentiel, plus la valeur du champ est
importante.



Résumé : Maxwell-Faraday -> définition de la circulation d’un vecteur, Théoreme de Stokes -> Existence
du potentiel électrostatique, définition de la tension, relation locale entre le champ électrique et le
potentiel, notion de surfaces équipotentielles.

3. Equation de Poisson

Siméon Denis Poisson (1781-1840)

Conclusion : il existe deux méthodes pour déterminer un champ
électrique

- silarépartition des charges est connue : Maxwell - Gauss
- sile potentiel est connu : relation entre champ et potentiel

L’équation de Poisson permet de déterminer le potentiel directement a
— 4/%@& partir de la répartition des charges, sans passer par le champ.

1. Champ et potentiel électriques créés par des distributions continues de charges, application

du théoreme de Gauss
1. Définition d’une distribution continue de charges : Dcharges

2. Champ et potentiel électriques créés par une sphére uniformément chargée en volume

Observation : la charge est a symétrie sphérique le champ électrique est

. ;s . s —
radial sphérique EM) = E.(M) u,

Montrons que I’étude des symétries de la distribution des charges

permet de prédire que le champ est radial :

Coordonnées adaptées : sphériques.

Rappel : les 3 systemes de coordonnées
http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/reperes.html

Recherche des plans de symétrie des charges passant par le point M quelconque de I'espace :
Seuls 3 plans passent par M

I (M, %, ug) =Tl

H2 (MI ‘lj;'u_(p)) = HS

I3 (M, g, i) #I1s ne coupe pas les charges

e — e — . s . N wnd

E(M) € (I1; n I1,) donc E(M) est colinéaire a u,

—) H
EM) = E.(M) u,
Le champ électrique est radial sphérique conformément a I’'observation.

L’étude des plans de symétrie des charges permet de déterminer la direction du champ électrique.



La distribution de charges étant invariante par rotation d’angles 0 et o, la carte de champ est la méme
quel que soit 0 et quel que soit ¢ donc la composante radiale du champ électrique E,.(M) ne dépend ni 0,
ni de @ mais uniquement de r.

E(M) = E, (M), = E,(r) i,

L’étude des invariances de la distribution des charges permet de déterminer de quelles coordonnées
spatiales dépendent les composantes du champ électrique.

Principe de Curie : « les conséquences ont au moins les symétries des causes »

Pierre Curie (1859-1906)

Méthodologie de détermination d’un champ électrique créé par une distribution continue

de charges :
e La forme de la distribution permet de choisir le repere d’étude (cylindrique

ou sphérique)

e La détermination des plans de symétrie des charges donne la direction de
champ électrique

e La détermination des opérations de translation et de rotation laissant les charges invariantes
permet de déterminer de quelles coordonnées spatiales dépendent les composantes du champ électrique.

e Choisir une surface de Gauss adaptée qui passe par le point M ou on veut déterminer le
champ. La surface de Gauss est fermée, sphérique ou cylindrique en fonction de la géométrie de la
distribution des charges.

e Appliquer le théoréme de Gauss pour en déduire E(M)

e Utiliser la relation locale entre E et V pour déterminer V(M)

3. Champ et potentiel électriques créés par un cylindre infini uniformément chargé en volume

Tige rigide de plexiglas frottée par une peau de chat
4 S —
« N//. Observation : le champ électrique est radial cylindrique E(M) =
FERT0, T E, (M)
AN\ O 1 Montrons que I’étude des symétries de la distribution des charges

—F4N ‘A - permet de prédire que le champ est radial :
‘ Coordonnées adaptées : cylindriques.

i e Recherche des plans de symétrie des charges passant par le point
‘,w’*“’\_‘ \ . M guelconque :

(®)

Seuls 3 plans passent par M
v : = IT (M; 77; , 77;) =1Ils
L (M, ) = T
‘ . II3 (M, g, ) #IIs ne coupe pas les charges
’ "¢ "¢ . s . N>
‘ E(M) € (T1; n II,) donc E(M) est colinéaire a u,
E(M) = E-(M)u,
Le champ électrique est radial cylindrique conformément a
I’'observation.



La distribution de charges étant invariante par rotation d’angle 0 et par translation selon z, la carte de
champ est la méme quel que soit 6 et quel que soit z donc la composante radiale du champ électrique

E, (M) ne dépend ni 6, ni de z mais uniquement de .

—_—
E(M) = E,(M) u; = E.(r) &}
4. Champ et potentiel électriques créés par un plan infini uniformément chargé

Définition de la densité surfacique de charge ¢ en C.m™

IV. Les condensateurs
1. Phénomeéne d’influence électrique
https://www.youtube.com/watch?v=My0Sa0q5Mel ou vidéo Influence électrostatique

On constate que, lorsque |'on
approche une charge d'un
conducteur, on modifie la répartition
des charges a la surface de celui-ci.
On exerce une influence sur le
conducteur sans qu'aucun contact ne
soit nécessaire.

=

La terre est un réservoir de charges
électriques.

Elle va évacuer le surplus de charges
négatives, pour que I'ensemble reste
neutre.

On déconnecte le conducteur de la terre puis on retire la charge négative, le conducteur
reste chargé positivement. Le conducteur a été chargé par influence.



2. Application au condensateur plan

Lignes de champ

(b)

Expression de la capacité du
condensateur

Permittivité relative

Figure 17.31

(a) Le champ électrique
d'un condensateur plan (b) Vue
rapprochée de I'effet de bord. (c) Le
champ révélé par des fibres de rayonne
suspendues dans I'huile.

Substance

vide

air sec

cau

veIre

nylon

huile

Plexiglas

&

1.0006

78.5

. B

22

2-4

3. Energie stockée dans un condensateur

Densité d’énergie électrique



<

Particule dans un champ

1. Analogie formelle entre champ électrique et champ de gravitation
2. Energie d’une particule dans un champ 100000 -

10000

Les accélérateurs de particules

1000 Tevatron

Cqﬂf;ionneurs
Le diagramme de Livingston : progrés exponentiels de I'énergie Tev 100 |

des faisceaux de particules accélérées Sl

e+ e

Accélérateurs linéaires

Collisionneurs
Anneaux de
slockage

Le canon a électrons est un des composants essentiels d'un  ev 10| 5o o0
tube cathodique ou d'instruments comme les microscopes
¢électroniques. Ces appareils mettent en jeu un faisceau

d'électrons et le canon a électrons constitue la source en 100 / WC”W'S

Synchrocyclotrons a

i ) Cyclotrofh
électrons de ce faisceau. VI |
. ra Accélérateurs électrostatiques
1 ‘f-
source du 147 |
filament 4 Accélérateurs a redresseurs
1930 I 1 QISD I 1 9I‘r'U I 1990 2010
; I o .
filament:de = constitution d'un canon a électrons
tungsténe
cylindre de . .
Wehnelt —* = Un filament de tungsteéne ou en LaB6 (rdle
générateur
haute tension| av ' r .
A d'émettrice)
faisceau -
d'élecfr'orrs —
y — Un cylindre de Wehnelt (role de focalisation)
. a

anode —

1 = Une anode (role d'accélération)

Fonctionnement

Le filament de tungstene (en forme d'épingle a cheveux, de diamétre de quelques dizaines de mm) est chauffé a
une température voisine de 2700°C. Ainsi, les électrons sont extraits du métal et forment un nuage entourant le
filament (principe de I'émission thermoélectronique). L'électrode de Wehnelt est portée a un potentiel négatif de
guelques centaines de Volts par rapport au filament, pour réunir les électrons en un point finement focalisé, le
cross-over. Les électrons sont ensuite accélérés en direction de I'anode par la haute tension (plusieurs centaines
de milliers de volts).

En effet, le champ électrique existant entre I'anode et le filament permet d'accélérer les électrons libérés et
définit la tension de fonctionnement du microscope.

Le faisceau d'électrons accélérés a une vitesse de plusieurs centaines de milliers de km a la seconde émerge de
['autre coté de I'anode percée d'un trou.

Le microscope électronique est le plus connu des accélérateurs électrostatiques. L'accélération sous quelques

centaines de keV fournit des longueurs d'ondes adaptées aux dimensions des cellules, des virus, des microcristaux et
des plus grosses molécules.

Questions : expliquer le principe de fonctionnement d’un canon a électrons, quel est le lien quantitatif entre vitesse
et tension ? Justifier un ordre de grandeur donné au choix. Pourquoi exprime-t-on des énergies en MeV, GeV, TeV ?



