
ELECTROMAGNETISME Chapitre 1 : Electrostatique 
Notions et contenus Capacités exigibles CdE 

4.1. Symétries du champs électrique   

Symétries pour le champ 
électrique, caractère polaire du 
champ électrique. 

Exploiter les symétries et invariances 
d'une distribution de charges pour en 
déduire des propriétés du champ 
électrique  

CdE 2 : 2.4 ; 2.8 à 2.10 

4.2. Champ électrique en régime stationnaire  

Équations de Maxwell-Gauss 
et de Maxwell- Faraday. 

Citer les équations de Maxwell-Gauss et 
Maxwell- Faraday en régime variable et 
en régime stationnaire. 

 

Potentiel scalaire électrique. 
 
 
 
 
 
 

 
Propriétés topographiques. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Équation de Poisson. 

Relier l'existence du potentiel scalaire 
électrique au caractère irrotationnel du 
champ électrique. 
Exprimer une différence de potentiel 
comme une circulation du champ 
électrique. 

 

Associer l’évasement des tubes de 
champ à l’évolution de la norme du 
champ électrique en dehors des 
sources. 
Représenter les lignes de champ 
connaissant les surfaces 
équipotentielles et inversement. 
Évaluer la valeur d’un champ électrique à 
partir d’un  réseau de surfaces 
équipotentielles. 

Établir l’équation de Poisson reliant le 
potentiel à la   densité volumique de 
charge. 

CdE2 : 2.17 ; 2.19 

CdE1 : 14.7 à 14.9 

 

 

 

 

CdE1 : 15.3 ; 15.4 

CdE2 : 2.21 

Théorème de Gauss. Énoncer et appliquer le théorème de Gauss. 
Établir le champ électrique et le potentiel 
créés par une charge ponctuelle, une 
distribution de charge à symétrie 
sphérique, une distribution de charge à 
symétrie cylindrique. 
Exploiter le théorème de superposition. 

CdE2 : 2.12 ; 2.16  

Distribution surfacique de charge. Utiliser le modèle de la distribution 
surfacique de charge. 
Établir le champ électrique créé par un 
plan infini   uniformément chargé en 
surface. 

CdE2 : 2.3 ; 2.5 

Énergie potentielle électrique d'une 
charge ponctuelle dans un champ 
électrique extérieur. 

Établir la relation entre l’énergie 
potentielle d’une            charge ponctuelle et le 
potentiel. 
Appliquer le théorème de l’énergie cinétique 
à une particule chargée dans un champ 
électrique. 

 

Champ gravitationnel. Établir les analogies entre les champs 
électrique et gravitationnel. 

 

4.3. Condensateur  



Phénomène d'influence 
électrostatique. 
 
Capacité d'un condensateur plan. 
 

 

Rôle des isolants. 
 

 

Densité volumique d'énergie 
électrique. 
 

Décrire qualitativement le phénomène 
d'influence  électrostatique. 
 

Déterminer l’expression du champ d’un 
condensateur plan en négligeant les 
effets de bord. Déterminer l'expression de 
la capacité. 

 

Prendre en compte la permittivité du 
milieu dans  l’expression de la 
capacité. 

 

Déterminer l’expression de la densité 
volumique d’énergie électrique dans le 
cas du condensateur plan à partir de 
celle de l’énergie du condensateur. 
Citer l'expression de la densité 
volumique d'énergie  électrique. 

 
 
 
CdE 2 : 2.18 

 
Rappels de première année : Mécanique 1 

Notions et contenus Capacités exigibles CdE 
2.4. Mouvement de particules chargées dans un champs électrique uniformes et 
stationnaires 
Force de Lorentz exercée sur une 
charge ponctuelle ; champs 
électrique. 

 

Puissance de la force de Lorentz. 

Évaluer les ordres de grandeur de la force 
électrique  et la comparer à ceux des forces 
gravitationnelles. 

Justifier qu’un champ électrique peut 
modifier l’énergie cinétique d’une particule  

CdE1 : 14.1 à 14.3 
 
 
 

CdE1 : 14.4 
 

Mouvement d’une particule 
chargée dans un champ 
électrostatique uniforme. 

Mettre en équation le mouvement et le 
caractériser comme un mouvement à 
vecteur accélération constant. 
Effectuer un bilan énergétique pour 
déterminer la valeur de la vitesse d'une 
particule chargée accélérée par une 
différence de potentiel. 

CdE1 : 15.1 ; 15.8 : 
15.9 

Appendice 2 : outils mathématiques 

Notions et contenus Capacités exigibles 

1. Analyse vectorielle 
Rotationnel. 
 

Citer et utiliser le théorème de Stokes. 
 

 

  



Les équations de Maxwell (1831 – 1879) 

 

Maxwell-Gauss (1777 - 1835) :   𝑑𝑖𝑣 𝐸
→

(𝑀, 𝑡) =
ఘ(ெ,௧)

ఌ೚
 

         
 
 

 
 
 

Maxwell – Thomson (1824 – 1907):  

    𝑑𝑖𝑣 𝐵
→

(𝑀, 𝑡) = 0 
 

 

Maxwell – Faraday (1791-1867) : 𝑟𝑜𝑡
ሱ⎯ሮ

𝐸
→

(𝑀, 𝑡) = −
డ஻

→
(ெ,௧)

డ௧
 

 
      Maxwell – Ampère (1775 – 1836) :    

𝑟𝑜𝑡
ሱ⎯ሮ

𝐵
→

(𝑀, 𝑡) = µ௢ ൬𝑗é௟
ሱሮ

(𝑀, 𝑡) + 𝜀௢
డ ா

→
(ெ,௧)

డ௧
൰ 

 
 
 
 

 
 

 𝐸
→

(𝑀, 𝑡) : vecteur champ électrique en V.m-1 𝐵
→

(𝑀, 𝑡) : vecteur champ magnétique en T (Tesla) 

(M,t) : densité volumique de charge en C.m-3     𝑗
→

é௟
(𝑀, 𝑡): vecteur densité de courant électrique en A.m -2 

permittivité du vide en F.m-1   µo : perméabilité du vide en H.m-1 

µooc2 = 1 où c est la vitesse de la lumière dans le vide 

 
 

ELECTROSTATIQUE : 2 équations locales. Les champs sont indépendants du temps. 

Les équations locales de l’électrostatique : 

Maxwell-Gauss :   𝑑𝑖𝑣 𝐸
→

(𝑀) =
ఘ(ெ)

ఌ೚
    Maxwell – Faraday : 𝑟𝑜𝑡

ሱ⎯ሮ
𝐸
→

(𝑀) = 0ሬ⃗  

 
I. Propriétés topographiques du champ électrique : analyse des cartes de champ : 

1. Lignes de champ électrique créées par une charge ponctuelle 

Rappel : loi de Coulomb, expression de la force électrostatique entre deux charges : 𝐹⃗௤(ை)→௤(ெ) =  
௤(ை)௤(ெ)

ସగఌ೚

ைெሬሬሬሬሬሬሬ⃗

(ைெ)య
 



Définition du champ électrique 𝐸ሬ⃗ (𝑀) en M créé par une charge ponctuelle q en O :  𝐸ሬ⃗ (𝑀) =  
ி⃗೜(ೀ)→೜(ಾ)

௤(ெ)
 

L’expression du champ électrique au point M créé par la charge q qui se trouve en O est : 

𝐸ሬ⃗ (𝑀) =  
௤

ସగఌ೚

ைெሬሬሬሬሬሬሬ⃗

(ைெ)య
   𝐸ሬ⃗ (𝑟) =  

௤

ସగఌ೚

௨ೝሬሬሬሬሬ⃗

௥మ
 = E(r) 𝑢௥ሬሬሬሬ⃗        

En coordonnées sphériques : (r,  𝑂𝑀ሬሬሬሬሬሬ⃗  = r 𝑢௥ሬሬሬሬሬ⃗  

Le champ électrique est un vecteur polaire car colinéaire à 𝑂𝑀ሬሬሬሬሬሬ⃗ .  
Le champ électrique est radial, il est colinéaire à  𝑢௥ሬሬሬሬሬ⃗ , il décroit en 1/r2. 
Les points tels que la valeur du champ est constante se trouvent sur une sphère de rayon r. 
La valeur du champ électrique ne dépend que de la coordonnée r de M.  
Elle ne dépend pas des coordonnées angulaires  et Le champ électrique est à symétrie sphérique. 

Lignes de champ électrique : courbe orientée, tangente au champ 
électrique en tout point 

Des fibres fines de rayonne suspendues dans l’huile tendent à 
s’aligner au voisinage d’un objet chargé. 

Lignes de champ créées par une charge ponctuelle 

 

 

 

 

 

 

 

 

 

 

 

Sites de visualisation du tracé des lignes de champ électrique : 
https://phyanim.sciences.univ-nantes.fr/Elec/Champs/champE.php :  
https://www.falstad.com/vector3de/ 
 

  



2. Lignes de champ électrique créées par deux charges identiques de même signe. 

 

Propriétés de symétrie d’un vecteur polaire 𝑬
→

 : 
S est un plan de symétrie des charges qA et qB si les charges sont à la même distance du plan et si qA = qB. 

Si M є S alors 𝑬(𝑴)
ሱ⎯⎯⎯ሮ

 є S. 

Si P’ = sym(P) /S alors 𝑬(𝑷ඁ)
ሱ⎯⎯⎯ሮ

= sym 𝑬(𝑷)
ሱ⎯⎯⎯ሮ

/S 

Théorème de superposition : 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௤஺(𝑀)
ሱ⎯⎯⎯⎯⎯ሮ

+ 𝐸௤஻(𝑀)
ሱ⎯⎯⎯⎯⎯ሮ

  

Comme le plan de la feuille est un plan de symétrie des charges 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

 appartient à ce plan, donc  

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ + 𝐸ఏ(𝑀) 𝑢ఏ

ሱሮ 

En coordonnées sphériques, M(r, la carte de champ est la même quel que soit donc les 
composantes 𝑬𝒓(𝑴)𝒆𝒕 𝑬𝜽(𝑴) du champ électrique ne dépendent pas de la coordonnée angulaire  de M, 
mais uniquement des coordonnées r et . 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ + 𝐸ఏ(𝑀) 𝑢ఏ

ሱሮ =  𝐸௥(𝑟, 𝜃) 𝑢௥
ሱሮ + 𝐸ఏ(𝑟, 𝜃) 𝑢ఏ

ሱሮ 

La distribution de charges est invariante par rotation d’angle 

Remarque : on peut faire le même raisonnement en coordonnées cylindriques M(rcyl, , z) 

Comme le plan de la feuille est un plan de symétrie des charges 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

 appartient à ce plan, donc  

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ + 𝐸௭(𝑀) 𝑢௭

ሱሮ 

𝑢௥
ሱሮ est le vecteur unitaire radial cylindrique ≠ 𝑢௥

ሱሮ  le vecteur unitaire radial sphérique 

Pour donner la position d’un point en coordonnées cylindriques il faut préciser la valeur de : 



 r distance entre le point M et l’axe vertical z ;  angle entre OM et l’axe z, vertical ; angle entre le 
projeté de M sur le plan horizontal (Oxy) et l’axe Ox ; z valeur algébrique du projeté de M sur l’axe z. 

La carte de champ est la même quel que soit donc les composantes 𝑬𝒓(𝑴)𝒆𝒕 𝑬𝒛(𝑴) du champ 
électrique ne dépendent pas de la coordonnée angulaire de M, mais uniquement des coordonnées r et z. 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ + 𝐸௭(𝑀) 𝑢௭

ሱሮ =  𝐸௥(𝑟, 𝑧) 𝑢௥
ሱሮ + 𝐸௭(𝑟, 𝑧) 𝑢௭

ሱሮ 

La distribution de charges est invariante par rotation d’angle  

3. Lignes de champ électrique créées par deux charges opposées = dipôle électrique 

 

 

 

 

 

 

 

 

 

 

 

Propriétés d’antisymétrie  d’un vecteur polaire 𝑬
→

 : 
S est un plan d’antisymétrie des charges qA et qB si les charges sont à la même distance du plan et si qA = - qB. 

Si M є S alors 𝑬(𝑴)
ሱ⎯⎯⎯ሮ

 Ʇ S. 

Si P’ = sym(P) /S alors 𝑬(𝑷ඁ)
ሱ⎯⎯⎯ሮ

= - sym 𝑬(𝑷)
ሱ⎯⎯⎯ሮ

/S 

Comme précédemment, le plan de la feuille est un plan de symétrie des charges 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

 appartient à ce plan 
4. Lignes de champ électrique créées par des charges quelconques 

Le poisson éléphant 
produit un champ 
dipolaire et détecte 
les objets proches 
par leurs effets sur 
ce champ 

 

 

 



II. Les équations de l’électrostatique 
 
Les équations locales de l’électrostatique : 

Maxwell-Gauss :   𝑑𝑖𝑣 𝐸
→

(𝑀) =
ఘ(ெ)

ఌ೚
    Maxwell – Faraday : 𝑟𝑜𝑡

ሱ⎯ሮ
𝐸
→

(𝑀) = 0ሬ⃗  

 
Les équations intégrales de l’électrostatique : 
 

1. Théorème de Gauss 

Maxwell-Gauss -> Théorème d’Ostrogradski -> Théorème de Gauss 

Mikhaïl Vassilievitch Ostrogradski (1801- 1862, Ukraine) 

Interprétation géométrique (voir cartes de champ) : 

En dehors des charges : 𝑑𝑖𝑣 𝐸
→

(𝑀) = 0 ; 𝐸
→

 est un vecteur à flux conservatif ; le flux de 

𝐸
→

 à travers une surface fermée est nul ; dans un tube de champ ∶ flux entrant = flux sortant, 
l’évasement des lignes de champ s’interprète par une diminution de la valeur du champ électrique. 

En présence de charges : 𝑑𝑖𝑣 𝐸
→

(𝑀) =
ఘ(ெ)

ఌ೚
 ; théorème de Gauss : le flux de champ électrique à travers une 

surface fermée est égal au rapport de la charge à l’intérieur de cette surface à la permittivité du vide. 

2. Potentiel électrique 

Maxwell-Faraday -> définition de la circulation d’un vecteur  

a. Circulation d’un champ de vecteurs 

La circulation élémentaire dC du champ vectoriel A


(M,t) entre deux points voisins M et M’ tels que 

 𝑀𝑀′ሬሬሬሬሬሬሬሬሬ⃗ = 𝑑ℓሬ⃗  est :     𝑑𝐶  = 𝐴
→

(𝑀, 𝑡). 𝑑 ℓ
→

. 
 

Le travail élémentaire est la circulation élémentaire de la force : 𝛿𝑊  = 𝐹
→

(𝑀, 𝑡). 𝑑 ℓ
→

 
 

La circulation du champ vectoriel A


(M,t) entre les points et  le long de la courbe () est :  

𝐶 ఈ
 ఉ

(𝛤) = ∫ 𝐴
→

(𝑀, 𝑡). 𝑑 ℓ
→ఉ

ఈ(௰)
. 

 

Le travail est la circulation de la force entre et  : 𝑊 ఈ
 ఉ

(𝛤) = ∫ 𝐹
→

(𝑀, 𝑡). 𝑑 ℓ
→ఉ

ఈ(௰)
. 

 

La circulation du champ vectoriel A


(M,t)  le long la courbe fermée () est : 

𝐶 ఈ
 ఈ൫𝐴൯ =  𝐶୻௙௘௥௠é ௢௥௜௘௡௧é ൫𝐴൯ = ∮ 𝐴

→

(𝑀, 𝑡). 𝑑 ℓ
→

୻
. 

. 
Le travail le long de la courbe fermée est la circulation de la force entre et  : 

𝑊 ఈ
ఈ(𝛤) = ර 𝐹

→

(𝑀, 𝑡). 𝑑 ℓ
→

୻

 

𝑊 ఈ
ఈ(𝛤) = 0 si la force est conservative, c’est-à-dire que son travail ne dépend pas du chemin suivi. 



Exemples de forces conservatives : 
force de pesanteur, force de gravitation, force électrostatique, force élastique du ressort 

Exemples de forces non conservatives : 
Forces de frottements 

 

 

George Gabriel Stokes (1819-1903) 

b. Théorème de Stockes (1849, admis) : définition de l’opérateur rotationnel 

 
Schémas et S 
 

Remarque: rot A
  

 est un champ de vecteurs.  𝒓𝒐𝒕
ሱ⎯ሮ

ቀ𝒗𝒆𝒄𝒕𝒆𝒖𝒓
ሱ⎯⎯⎯⎯⎯⎯ሮ

ቁ = 𝒗𝒆𝒄𝒕𝒆𝒖𝒓
ሱ⎯⎯⎯⎯⎯⎯ሮ

 

 
c. Application en électrostatique, définition de la tension UAB 

𝑟𝑜𝑡
ሱ⎯ሮ

𝐸
→

(𝑀) = 0ሬ⃗  ; la circulation du champ électrique sur un contour fermé est nulle 𝐶(𝐸ሬ⃗ )
௦௨௥ ௰ ௙௘௥௠é,௢௥௜௘௡௧é

= 0 ,   

𝐸ሬ⃗  est un vecteur à circulation conservative. 

Comme les forces conservatives. 

Si une force est conservative, il existe une fonction scalaire appelée énergie potentielle telle que 

𝑊 ఈ
 ఉ(𝛤) = න 𝐹

→
(𝑀, 𝑡). 𝑑 ℓ

→ఉ

ఈ(௰)

= − ൫𝐸𝑝(𝛽) −  𝐸𝑝(𝛼)൯ 

𝛿𝑊  = 𝐹
→

(𝑀, 𝑡). 𝑑 ℓ
→

 = - dEp 
 
Par analogie, on définit la fonction scalaire V, appelée potentiel électrique, telle que  

dC(𝐸 ሬሬሬ⃗ ) = 𝐸
→

(𝑀). 𝑑 ℓ
→

 = - dV 

𝐶 ఈ
 ఉ

(𝐸ሬ⃗ ) = ∫ 𝐸ሬ⃗ (𝑀). 𝑑 ℓ
→ఉ

ఈ
 = ∫ −𝑑𝑉

ఉ

ఈ
=  − ൫𝑉(𝛽) −  𝑉(𝛼)൯ =  𝑉(𝛼) − 𝑉(𝛽) = V



On retient que la tension UAB = 𝐶 ஺
 ஻(𝐸ሬ⃗ ) = ∫ 𝐸ሬ⃗ (𝑀). 𝑑 ℓ

→஻

஺
 

  

Soit A


(M,t)  un champ de vecteur défini sur tout l’espace. Il existe un unique champ de vecteurs 

appelé rotationnel de A


, noté rot A
  

 tel que pour toute surface S  s’appuyant sur un contour  fermé 

et orienté la circulation de A


 le long de  est égale au flux de rot A
  

 à travers S   

𝐶(𝐴)
௦௨௥ ௰ ௙௘௥௠é ௢௥௜௘௡௧é

= ∮ 𝐴
→

. 𝑑 𝑙
→

= ∬ ൭𝑟𝑜𝑡

  
ሱ⎯ሮ

𝐴
→

൱ . 𝑑 𝑆
→

= ∬ ൭𝑟𝑜𝑡

  
ሱ⎯ሮ

𝐴
→

൱ . 𝑛
→

𝑑 𝑆
ఀ(௰)ఀ(௰)௰

= 𝛷(𝑟𝑜𝑡
ሱ⎯ሮ

𝐴)
à ௧௥௔௩௘௥௦ ௌ(୻) ௢௨௩௘௥௧௘

 

 
. 



d. Relation locale entre le champ et le potentiel, opérateur gradient 

Le potentiel V(M) est une fonction de l’espace. 

En coordonnées cartésiennes V(M) = V(x, y, z) 

La différentielle de V(x, y, z) est notée dV = డ௏

డ௫
𝑑𝑥 +

డ௏

డ௬
𝑑𝑦 +

డ௏

డ௭
𝑑𝑧 par définition d’une fonction de 3 variables 

Or dV = -  𝐸
→

(𝑀). 𝑑 ℓ
→

 

Avec    𝐸
→

(𝑀) =  E𝑥(x, y, z) 𝒖ሬሬ⃗ 𝐱 + E𝑦(x, y, z) 𝒖ሬሬ⃗ 𝐲  + E𝑧(x, y, z) 𝒖ሬሬ⃗ 𝐳  et  𝑑 ℓ
→

= dx 𝒖ሬሬ⃗ x + dy 𝒖ሬሬ⃗ y  + dz 𝒖ሬሬ⃗ z 

Soit   డ௏

డ௫
𝑑𝑥 +

డ௏

డ௬
𝑑𝑦 +

డ௏

డ௭
𝑑𝑧 = - ( E𝑥(x, y, z). dx + E𝑦(x, y, z). dy + E𝑧(x, y, z). dz) 

Par identification డ௏

డ௫
= −E𝑥(x, y, z) ; డ௏

డ௬
= −E𝑦(x, y, z) ; డ௏

డ௭
= −E𝑧(x, y, z) 

𝐸ሬ⃗ (𝑀) = ቌ

E௫(x, y, z)

E௬(x, y, z)

E௭(x, y, z)

ቍ = −

⎝

⎜
⎜
⎛

𝜕𝑉

𝜕𝑥
𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑧⎠

⎟
⎟
⎞

= −

⎝

⎜
⎜
⎛

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧⎠

⎟
⎟
⎞

𝑉(𝑥, 𝑦, 𝑧) = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗  𝑉(𝑀) 

Ce qui définit l’opérateur gradient, uniquement en coordonnées cartésiennes 𝒈𝒓𝒂𝒅
ሱ⎯⎯⎯ሮ

=

⎝

⎜
⎛

𝝏

𝝏𝒙
𝝏

𝝏𝒚

𝝏

𝝏𝒛⎠

⎟
⎞

 

Relation entre le champ électrique et le potentiel électrique :  

𝑬ሬሬ⃗ (𝑴) = −𝒈𝒓𝒂𝒅ሬሬሬሬሬሬሬሬሬሬሬ⃗  𝑽(𝑴)   et     dV = -  𝑬
→

(𝑴). 𝒅 𝓵
→

 
 

Les surfaces équipotentielles sont perpendiculaires aux lignes de champ 

Potentiel créé par une charge ponctuelle : 𝐸ሬ⃗ (𝑀) = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗  𝑉(𝑀) en coordonnées sphériques 

𝑉(𝑀) =  
௤

ସగఌ೚

ଵ

ைெ
  𝑉(𝑟) =  

௤

ସగఌ೚

ଵ

௥
 

Potentiel créé par deux charges ponctuelles : théorème de superposition  

𝑉(𝑀) =  𝑉௤஺(𝑀) + 𝑉௤஻(𝑀) =  
𝑞஺

4𝜋𝜀௢

1

𝐴𝑀
+  

𝑞஻

4𝜋𝜀௢

1

𝐵𝑀
 

 

Potentiel créé par deux charges ponctuelles : 𝐸ሬ⃗ (𝑀) = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗  𝑉(𝑀) = − 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗  𝑉(𝑟, 𝑧) en coordonnées 

cylindriques : 𝐸௥(𝑟, 𝑧) =  − 
డ௏(௥,௭)

డ௥
   et   𝐸௭(𝑟, 𝑧) =  − 

డ௏(௥,௭)

డ௭
 

  



e. Tracé des surfaces équipotentielles et des lignes de champs 
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Elec/Champs/  
Visualisation lignes de champ en3D   https://www.falstad.com/vector3de/ 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

Dipôle électrostatique : la différence de potentiel entre chaque équipotentielle est de 5 V 

Plus les équipotentielles sont rapprochées pour une même différence de potentiel, plus la valeur du champ est 
importante. 

Charge ponctuelle positive, la différence de 
potentiel est de 10 V entre chaque 
équipotentielle 

Deux charges positives identiques, la 
différence de potentiel est de 5 V 
entre chaque équipotentielle  



Résumé : Maxwell-Faraday -> définition de la circulation d’un vecteur, Théorème de Stokes -> Existence 
du potentiel électrostatique, définition de la tension, relation locale entre le champ électrique et le 
potentiel, notion de surfaces équipotentielles. 

3. Equation de Poisson  

Siméon Denis Poisson (1781-1840)     
 

 Conclusion : il existe deux méthodes pour déterminer un champ 
électrique 

- si la répartition des charges est connue : Maxwell - Gauss 
- si le potentiel est connu : relation entre champ et potentiel 

L’équation de Poisson permet de déterminer le potentiel directement à 
partir de la répartition des charges, sans passer par le champ.  

 

III. Champ et potentiel électriques créés par des distributions continues de charges, application 
du théorème de Gauss 

1. Définition d’une distribution continue de charges : Dcharges 
 

2. Champ et potentiel électriques créés par une sphère uniformément chargée en volume 
 
Observation : la charge est à symétrie sphérique le champ électrique est 

radial sphérique  𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ 

 
Montrons que l’étude des symétries de la distribution des charges 
permet de prédire que le champ est radial : 
 
Coordonnées adaptées : sphériques. 

Rappel : les 3 systèmes de coordonnées  
http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/meca/reperes.html 
 
Recherche des plans de symétrie des charges passant par le point M quelconque de l’espace : 
Seuls 3 plans passent par M 

1 (M, 𝑢௥
ሱሮ , 𝑢ఏ

ሱሮ) = s 

2 (M, 𝑢௥
ሱሮ , 𝑢ఝ

ሱሮ) =  s 
3 (M, 𝑢ఏ

ሱሮ , 𝑢ఝ
ሱሮ) ≠ s ne coupe pas les charges 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

∈ (Πଵ ∩ Πଶ) donc 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

 est colinéaire à 𝑢௥
ሱሮ 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ 

Le champ électrique est radial sphérique conformément à l’observation. 
 

L’étude des plans de symétrie des charges permet de déterminer la direction du champ électrique.  
 



La distribution de charges étant invariante par rotation d’angles et la carte de champ est la même 
quel que soit et quel que soit donc la composante radiale du champ électrique 𝑬𝒓(𝑴) ne dépend ni , 
ni de  mais uniquement de r. 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ = 𝐸௥(𝑟) 𝑢௥

ሱሮ 

L’étude des invariances de la distribution des charges permet de déterminer de quelles coordonnées 
spatiales dépendent les composantes du champ électrique.  

 

Principe de Curie : « les conséquences ont au moins les symétries des causes » 

Pierre Curie (1859-1906) 
 
Méthodologie de détermination d’un champ électrique créé par une distribution continue 
de charges : 

 La forme de la distribution permet de choisir le repère d’étude (cylindrique 
ou sphérique) 

 La détermination des plans de symétrie des charges donne la direction de 
champ électrique 

 La détermination des opérations de translation et de rotation laissant les charges invariantes 
permet de déterminer de quelles coordonnées spatiales dépendent les composantes du champ électrique. 

 Choisir une surface de Gauss adaptée qui passe par le point M où on veut déterminer le 
champ. La surface de Gauss est fermée, sphérique ou cylindrique en fonction de la géométrie de la 
distribution des charges. 

 Appliquer le théorème de Gauss pour en déduire E(M) 

 Utiliser la relation locale entre 𝐸ሬ⃗  et V pour déterminer V(M) 
 

3. Champ et potentiel électriques créés par un cylindre infini uniformément chargé en volume 
Tige rigide de plexiglas frottée par une peau de chat 

Observation : le champ électrique est radial cylindrique 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

=

𝐸௥(𝑀) 𝑢௥
ሱሮ 

Montrons que l’étude des symétries de la distribution des charges 
permet de prédire que le champ est radial : 
Coordonnées adaptées : cylindriques. 
Recherche des plans de symétrie des charges passant par le point 
M quelconque : 
Seuls 3 plans passent par M 
1 (M, 𝑢௥

ሱሮ , 𝑢௭
ሱሮ) = s 

2 (M, 𝑢௥
ሱሮ , 𝑢ఏ

ሱሮ) =  s 
3 (M, 𝑢ఏ

ሱሮ , 𝑢௭
ሱሮ) ≠ s ne coupe pas les charges 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

∈ (Πଵ ∩ Πଶ) donc 𝐸(𝑀)
ሱ⎯⎯⎯ሮ

 est colinéaire à 𝑢௥
ሱሮ 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ 

Le champ électrique est radial cylindrique conformément à 
l’observation. 



La distribution de charges étant invariante par rotation d’angle et par translation selon zla carte de 
champ est la même quel que soit et quel que soit zdonc la composante radiale du champ électrique 
𝑬𝒓(𝑴) ne dépend ni , ni de z mais uniquement de r. 

𝐸(𝑀)
ሱ⎯⎯⎯ሮ

= 𝐸௥(𝑀) 𝑢௥
ሱሮ = 𝐸௥(𝑟) 𝑢௥

ሱሮ 

4. Champ et potentiel électriques créés par un plan infini uniformément chargé 
Définition de la densité surfacique de charge  en C.m-2 

IV. Les condensateurs 
1. Phénomène d’influence électrique  

https://www.youtube.com/watch?v=My0Sa0q5MeI ou vidéo Influence électrostatique 
 

 
 

                                 

 

 

 

 

 

 

 

 

 

 

 

On déconnecte le conducteur de la terre puis on retire la charge négative, le conducteur 
reste chargé positivement. Le conducteur a été chargé par influence. 

La terre est un réservoir de charges 
électriques. 

Elle va évacuer le surplus de charges 
négatives, pour que l’ensemble reste 
neutre. 



 
 
 
 
 
 

2. Application au condensateur plan 
 

Lignes de champ 

Expression de la capacité du 
condensateur 

 

 

 

Permittivité relative 

3. Energie stockée dans un condensateur 

Densité d’énergie électrique 

  



V. Particule dans un champ 
1. Analogie formelle entre champ électrique et champ de gravitation 
2. Energie d’une particule dans un champ 

Les accélérateurs de particules 

Le diagramme de Livingston : progrès exponentiels de l'énergie 
des faisceaux de particules accélérées 

Accélérateurs linéaires 

Le canon à électrons est un des composants essentiels d'un 
tube cathodique ou d'instruments comme les microscopes 
électroniques. Ces appareils mettent en jeu un faisceau 
d'électrons et le canon à électrons constitue la source en 
électrons de ce faisceau. 

constitution d'un canon à électrons  

Un filament de tungstène ou en LaB6 (rôle 

d'émettrice)  

Un cylindre de Wehnelt (rôle de focalisation)  

Une anode (rôle d'accélération)

Fonctionnement  
Le filament de tungstène (en forme d'épingle à cheveux, de diamètre de quelques dizaines de mm) est chauffé à 
une température voisine de 2700°C. Ainsi, les électrons sont extraits du métal et forment un nuage entourant le 
filament (principe de l'émission thermoélectronique). L'électrode de Wehnelt est portée à un potentiel négatif de 
quelques centaines de Volts par rapport au filament, pour réunir les électrons en un point finement focalisé, le 
cross-over. Les électrons sont ensuite accélérés en direction de l'anode par la haute tension (plusieurs centaines 
de milliers de volts).   

En effet, le champ électrique existant entre l'anode et le filament permet d'accélérer les électrons libérés et 
définit la tension de fonctionnement du microscope.  
Le faisceau d'électrons accélérés à une vitesse de plusieurs centaines de milliers de km à la seconde émerge de 
l'autre côté de l'anode percée d'un trou.  

Le microscope électronique est le plus connu des accélérateurs électrostatiques. L'accélération sous quelques 
centaines de keV fournit des longueurs d'ondes adaptées aux dimensions des cellules, des virus, des microcristaux et 
des plus grosses molécules.  

Questions : expliquer le principe de fonctionnement d’un canon à électrons, quel est le lien quantitatif entre vitesse 
et tension ?  Justifier un ordre de grandeur donné au choix. Pourquoi exprime-t-on des énergies en MeV, GeV, TeV ? 


