Ondes : chapitre 1 Equation de D’Alembert et solutions

Notions et contenus \ Capacités exigibles CdE
6.1. Phénomenes de propagation non dispersifs : équation de d'Alembert
6.1.1. Propagation unidimensionnelle
Ondes transversales sur une Etablir 'équation d’onde dans le cas d’'une
corde vibrante corde infiniment souple dans
I'approximation des petitsmouvements
transverses.
Equation de d'Alembert. Identifier une équation de d’Alembert. CdE2:23.8
Onde progressive. Onde Exprimer la célérité en fonction des
stationnaire parametres du milieu.
Citer des exemples de solutions de
I’équation ded’Alembert
unidimensionnelle.
Ondes progressives Etablir la relation de dispersion a partir de
harmoniques. I’équation de d’Alembert. Utiliser la
notation complexe.
Définir le vecteur d’onde, la vitesse de
phase.
Ondes stationnaires Décomposer une onde stationnaire en
harmoniques. ondes progressives, une onde progressive
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Conditions aux limites. Justifier et exploiter des conditions aux
limites.
Régime libre : modes propres
d’une corde vibrante fixée a ses Définir et décrire les modes propres.
deux extrémités. Construire une solution quelconque par
superposition de modes propres.
Régime forcé : corde de Melde. Associer mode propre et résonance en
régime forcé.
Ondes de tension et de courant Décrire un cable coaxial par un modéle a CdE 2:24.11

dans un cable coaxial.

Impédance caractéristique.

Réflexion en amplitude sur une
impédance terminale.

constantesréparties sans perte.
Etablir les équations de propagation dans
un cablecoaxial sans pertes modélisé
comme un milieu continu caractérisé par
une inductance linéique et une capacité
linéique
Etablir 'expression de 'impédance

caractéristique d’un cable coaxial.

Etudier la réflexion en amplitude de
tension pour une impédance terminale
nulle, infinie ou résistive.




1¢re gannée, 1er semestre
Théme 1 : ondes et signaux (1)

1.6. Propagation d’un signal

Propagation d’un signal dans un milieu illimité, non dispersif et transparent

Onde progressive dans le
cas d’'une propagation
unidimensionnelle non
dispersive.

Célérité, retard temporel.

Modéle de 'onde
progressive sinusoidale
unidimensionnelle. Vitesse
de phase, déphasage,
double périodicité spatiale et
temporelle.

Ecrire les signaux sous la forme f(x-ct) ou
g(x+ct). Ecrire les signaux sous la forme f(t-x/c)
ou g(t+x/c).Prévoir, dans le cas d’'une onde
progressive, I'évolution temporelle a position
fixée et I'évolution spatiale a différents instants.

Citer quelques ordres de grandeur de
fréquencesdans les domaines acoustique,
mécanique et électromagnétique.

Etablir la relation entre la fréquence, la
longueurd’onde et la vitesse de phase.
Relier le déphasage entre les signaux pergus
en deux points distincts au retard dd a la
propagation.

Mesurer la vitesse de phase, la longueur
d’ondeet le déphasage di a la propagation

Milieux dispersifs ou non dispersifs.

d’un phénoméne ondulatoire.
Définir un milieu dispersif.

CdE1:2.13a
2.15




Rappels de premiére année

Vous pouvez visualiser I'animation : Onde sur une corde
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string fr.html

L’amplitude de la corde y(x,t) varie en fonction du temps t et de la position x du point sur la corde.
La propagation de la déformation de la corde a la vitesse (ou célérité) c se fait sans déplacement
de matiere, mais avec propagation d’énergie, ici sous forme cinétique.

Propagation d’'une déformation dans le sens x croissant a la célérité c :

y t=0 y(x,t) =y(0,0) =y(0,t-1) ou

C T estla durée mise a la
déformation pour parcourir la
distance x a la célérité c =x /1.

| » X
] 1
0 X y(t =y (0, t-x/c) = y(t-x/c)
Une onde progressive dans la
y t direction x, dans le sens x
c croissant a la célérité c est
A . modélisée par la fonction
| - y(xt) = y(t-x/c)
0 X

Propagation d’'une déformation dans le sens x décroissant a la célérité c :

y(xt) =y(0,0) =y(0,t-t)ourtest
t=0 la durée mise a la déformation
C pour parcourir la distance -x a la
célérité c=-x /1.
pX ici x est négatif, or une distance
X 0 est toujours positive.

t y 1 y(xt) =y (0, t + x/c) = y(t +x/c)

C

C— Une onde progressive dans la
| direction x, dans le sens x

[ > décroissant a la célérité c est

X 0 modélisée par la fonction

y(x,t) = y(t+ x/c)



https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html

L. Equation de propagation d’'une onde sur une corde :

On consideére une corde homogeéne et sans raideur sur laquelle se propage une déformation
verticale y(x,t).

AT'équilibre la corde est au repos sur 'axe x. Elle est tendue grace a une petite masse m
suspendue au bout de la corde via une poulie.

On suppose que lors de la propagation de la déformation cette petite masse reste a I’équilibre.

Le mouvement se produit perpendiculairement a la direction de propagation : I'onde est
transversale.

I C X’

On veut établir 'équation du mouvement d'un élément de longueur d# de la corde de masse dm.

y y(xt)
Alinstant initial la corde est a T(x +dx,t -
I’équilibre
T(x,t) \ a(x+dx,t)
X a(xt) - - X
X dq¢ x+dx - X x+dx

A——

Alinstant t'élément d# de la corde est en mouvement de translation vertical selon I'axe y.
Cet élément de corde est soumis de la part du reste de la corde, a une tension a gauche T(x,t) eta

une tension a droite f(x+dx,t), tangentes a la corde au point d’application, ainsi qu’a son poids,
négligé devant la tension de la corde.

D’aprés le pfd : dmd = T(xt) + T(x+dxt)

On projette sur les axes, sachant que le mouvement de la corde n’a lieu que selony ax=0
Sur Ox : 0 = -cos(aux,1)).]|T (x,t)||+ cos(a(x+dx,t)).|| T (x+dx,t)]|
2

Sur Oy : dmZTZ = -sin(ou(x,1)).||T (x,£) ||+ sin(a(x+dx,t)).|| T (x+dx,t) ||

Les mouvements de la corde sont transversaux et petits ; en appelant a(x,t) 'angle entre la corde
et '’horizontale, on a, a 'ordre le plus bas :
cosa = 1;sin a(x) =a(x)

Sur Ox : 0 =-||T(x0)]|+ ||T(x+dx,t)||



Sur Oy : dm& = -ou(X%,t). T x,t) ||+ a(x+dx,t)). T x+dx,t
y at?

Sur Ox : | |7(x,t) || = ||?(x+dx,t) || la tension est donc uniforme sur toute la corde et on pose
||T (x,t)|| = To tension de la corde a I’équilibre

SurOy:  dm22 = (-a(xt)+ ax+dxt).To = Zdx.T
ur Oy : m——= = (-ou(x,t)+ ax+dx,t)).To = -dx.To
Comme les angles sont petits, on peut
y assimiler 'élément de longueur d¢ de la
_ corde a I'hypoténuse d’un triangle
Yt dyh-ooo oo - rectangle et poser
N a(x,t) 3y
Y - o ! < o ~tan a = —= et dx = df.cosa ~ df
- : 0x
X X+ dx Soit n la masse linéique de la corde en kg.m1
dm = pd€ = pdx
: 2%y _ 9%
Sur Oy : u dx 902 = axz.dx. To

On en déduit I'équation vérifiée par y(x,t) :

02}’(x,t)_T %y (x, 1)
b5 =107 g2
En posant
Ty
c= |—
U

On obtient I'équation de d’Alembert ou équation d’onde :

azy(x, t) _ CZ azy(x, t)
ot? © o 0x?

A partir d’'une équation aux dimensions sur I’équation d’onde, on remarque que c s’exprime en
m.s'!: c’est une célérité, c’est la célérité de I'onde.

On peut faire une méme équation aux dimensions sur I'expression de c(To, 1) ou To est la tension
de la corde en N et p sa masse linéique en kg.m-1.

La célérité de 'onde est d’autant plus grande que la tension T, est grande et la masse linéique p
faible.

Vous pouvez visualiser I'animation : Onde sur une corde et faire varier la tension de la corde
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string fr.html

L’équation d’onde précédente modélise une déformation y qui se propage dans la direction
x a la célérité c.


https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html

Jean le Rond D’Alembert ( 1717 -1783 ) : mathématicien, philosophe et
encyclopédiste frangais.

II. Les solutions de I'équation de D’Alembert

1. Caracteres généraux de I'équation de d’Alembert

L’équation de d’Alembert a une dimension s’écrit toujours :
0’y 0%

— =c“.
at? d0x?
C'est une équation linéaire.

y est la grandeur physique qui se propage
x est la direction de la propagation
c est la vitesse de propagation ou célérité de I'onde.

Cette célérité fait intervenir un terme dynamique exprimant la raideur du milieu : To comparé a
un terme d’inertie : .

On peut changer x en -x sans changer I’'équation, donc ses solutions : le phénomene décrit par
cette équation peut étre décrit dans un sens ou dans I'autre de la méme maniére : il est réversible
spatialement.

On peut changer t en -t sans changer I’équation, donc ses solutions : le phénomene décrit par
cette équation est réversible temporellement.

2. Solutions progressives de I'’équation de d’Alembert

Les solutions les plus générales de I'équation de d’Alembert a une dimension s'écrivent donc :

yx ) =f(t-x/c)+g(t+x/c),
c étant la célérité des ondes.

La solution en t - x/c décrit une onde progressive progressant dans le sens des x croissants au
cours du temps, avec la célérité c. On dit que I'onde se propage.

De méme, la solution g(t + x/c ) décrit une onde progressive progressant dans le sens des x
décroissants au cours du temps, avec la célérité c.

Siy est transverse sa direction de vibration est perpendiculaire a Ox. (corde, ondes électromagnétiques)
Siy est longitudinale sa direction de vibration est colinéaire a Ox. (onde sonore, ondes de compression
sur un ressort)


http://fr.wikipedia.org/wiki/1783
http://fr.wikipedia.org/wiki/Math%C3%A9maticien
http://fr.wikipedia.org/wiki/Philosophe
http://fr.wikipedia.org/wiki/Encyclop%C3%A9distes
http://fr.wikipedia.org/wiki/France

3. Les ondes progressives harmoniques (OPH)

Vous pouvez visualiser I'animation : Onde sur une corde
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string fr.html

st y(x,t) = Yo cos (o (t—x/c) + o) = Yo. cos (ot — @.X/c + Po) = Y. cos (ot — k.x + @o)

y(X,t) = Y. cos (ot — K.X + @o)

21T

Périodicité temporelle T : w = 2nf = - f: fréquence ; o : pulsation
e e e : , = L 2m _ 2mo , .
Périodicité spatiale, longueur d’onde A : On pose k = %u = C—:u = THu, le vecteur d’onde et u la

direction de propagation de 1’onde.

Vitesse de phase : vp=w/k=c

(o est la phase de ’onde a I’origine - T < o< T

= j(ot — kx) = jpo
Notation complexe uniquement pour les OPH: Y(x,t) = Yo. € avec Yo = Yo.e

Done £ =
onc —= = jwy
]
Et a—f = —jky si ’onde se propage dans la direction + ux car y(t,x) = Y, exp j (wt — k. x)
]
=2 +jky si I’onde se propage dans la direction - ix car y(t,x) =Y, exp j (wt + k. x)

ax

Relation de dispersion associée a I’équation de D’ Alembert

Remplacer les dérivées partielles dans 1’équation de D’ Alembert :

2%y
Y _ 2

— - donne (w)?y = c?(—jk)?y d’ou

()

C’est la relation de dispersion, elle exprime k2 en fonction de ®

k =+ ® / c pour les ondes se propageant dans le sens + ix
k=- ®/cpourles ondes se propageant dans le sens - x


https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html

4. Solutions stationnaires de I’équation de D’Alembert

a. Forme des solutions :
Une onde stationnaire est une onde qui s'écrit : y(x,t) = F(x).G(t).
On montre que les seules solutions acceptables physiquement sont de la forme :
y(x,t) = A.cos (kx+ ¢ ).cos(ot+¢) avec -n<d, o<m
L’amplitude de y(x,t) est A.cos(kx+¢).
Attention, lorsqu’on parle d’onde stationnaire y(x,t) dépend toujours du temps !

Vérifier que I'onde stationnaire est solution de I’équation de D’Alembert.

b. Nocuds de vibration :

On appelle nceud de vibration les points xn pour lesquels I'amplitude est nulle : cos(kxn + ¢)=0
kxn+¢ = g[n] = g + pm ol p est un entier relatif.
™

D’ou xnp = TP % — % donne la position du nceud p

On appelle ventre de vibration les points pour lesquels I'amplitude de vibration est maximale.

La distance entre deux nceuds de vibration consécutifs xnp+1 - XNp est égale a A/2,
La distance entre un ventre et un nceud consécutif est A /4. (rappel : k = 27/A)

2 ventre de vibration  Onde stationnaire représentée a 3 instants
B B / différents : t, t et t.
La position d’'un nceud ne change pas dans le
temps.

L’amplitude des ventres varie dans le temps.

noeud de
vibration



c. Réalisation d’'une onde stationnaire :

Animation Ondes Stationnaires
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_station
naires/stationnaires.php

onde résultante
nde 1 onde 2

onde résultante
onde 1 onde 2

onde résulfante
nde 1 onde

Superposition de deux ondes se propageant en sens contraire :

Deux ondes de méme amplitude (respectivement en vert et en rouge) se propagent en sens contraire.
L'onde résultante est représentée en bleu. On peut constater qu'elle ne se propage pas : on dit qu'elle
est stationnaire.

Il existe des nceuds de vibration, c’est-a-dire des points fixes ou I'amplitude de I'onde est toujours
nulle. Entre deux nceuds, I'amplitude de I'onde varie avec le temps.



d. Onde stationnaire sur une corde :
Si le milieu est infini, une onde émise en O a t = 0 se propage indéfiniment.
En général, le milieu est fini, et a ses extrémités se produisent des réflexions.

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string fr.html

On considére une corde fixée a I'extrémité x = 0 sur laquelle arrive une onde progressive
harmonique incidente :
yi(x, t) = A.cos(mt -kx ) en notation complexe yi(x,t) = A.ei(®t-kx)

En x =0, on doit avoir:
y(0,t) =0Vt
condition que ne vérifie pas I'onde incidente.

On constate qu'il existe une onde réfléchie, que I'on peut écrire de maniere tres générale :
yr = A’.cos(o’'t + K’x+¢ ) en notation complexe yr(x,t) = A’.el(®t+kx)

et telle que :
ytotale(o, t) =Vi (O,t) + yr(O,t) =0
0=A.ei®+A’ et
Expression valable pour tout t

o =w
A=A
k'=k

On calcule alors :
Veot(X, t) = Aei(@t-k0) A ei(@t+ k) =A_ eiot ((eikx - eikx) = -2jA sin(kx). ei®t = 2A sin(kx). el(®t-%2)

soit en réel : ytot(x,t) = 2Asin(kx).cos(wt - 1/2) = 2Asin(kx).sin(ot)

On remarque qu’on n’a plus de termes de propagation (t - x/c) ou (t + x/c) ! On obtient une
solution a variables séparées de la forme y(x,t) = F(t).G(x)

Y209 Jeir=-1

Remarque 1 : On peut définir le coefficient de réflexion en amplitude parr = 0.0’

Remarque 2 : dans le cas général d'un changement de milieu en x = 0, une partie de I'onde est

transmise et une partie réfléchie ; on définit alors le coefficient de transmission en amplitude par

yt(.X:O,t) 7 ] .
==—=—"= y(x,t) étant I'onde transmise.
yi=oey YD

Nous avons vu qu’une onde stationnaire peut étre considérée comme la superposition de deux
ondes progressives de méme amplitude se propageant en sens contraires.
De méme, une onde progressive harmonique peut étre considérée comme la superposition de
deux ondes stationnaires de méme amplitude et en quadrature :
y(%,t) = Yo.cos(mt — kx) = Yo.[cos(wt).cos(kx) + sin(wt).sin(kx)]
= Yo.[cos(mt).cos(kx) + cos(wt - g).cos(kx - g)]

Il est donc équivalent pour un probleme donné de rechercher des solutions stationnaires ou
progressives, mais :
e Lorsque le milieu est illimité, il est préférable de travailler avec des ondes progressives ;
e Lorsque le milieu est fini, il est préférable de travailler avec des ondes stationnaires.

10
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I11. Modes propres et forcés d'une corde sous tension

1. Régime libre : corde pincée de guitare
a. Spectre d’'une corde de guitare pincée
Vous pouvez écouter le fondamental émis par une corde pincée en fonction de la longueur de la
corde et la tension appliquée :
http://physique.ostralo.net/corde guitare/

y(%, t) = Assin (kx).cos(ot+¢)aveck=w/c f=2=2 |1
2L 2L [ 1p
Pour une corde de guitare la p— FREQUENCE
fréquence du fondamental dépend FONDAMENTALE
de la longueur L, de la tension T et Hz
de la masse linéique p, de la corde. 338
La longueur du manche d'une 253
guitare classique est de 65,2 cm. 201
c 1 [T 151
Fondamental : f1 = L= m 113
76

signal sonore 1.0 ms / div guitare électrique ( do3)

E E pour déplacer plus lentement le cursewr
FENETRE SIGNAL SONORE E afficher les 1 curseurs

période du signal sonore : T = 3.84 ms

fréquence du fondemental : f, = % = 260 Hz

[¥] afficher le curseur = frdquence * de la fenédtre * spectre FFT *

spectre FFT du signal sonore f1 =260 Hz

~—
L
1o

pour jouer une note cliguer dessus avec 18 Souris

‘|‘I|
fi f2 T fs

Le son entendu est d’autant plus riche que le nombre d’harmoniques est grand : c’est le timbre
d’un instrument de musique.

I | I | l l I T —
f

fs 17 fs fo fuo Tia iz Fiz foq Tis fie Tir T Tin Tao

vy, t) = Yooy Yn(x,t) = Yoq Ay sin(k,x) . cos(wyt + @) avec kn = w, /c

11


http://physique.ostralo.net/corde_guitare/

b. Modélisation de la corde vibrante
On considére une corde de longueur L fixée aux deux extrémités, sur laquelle aucune action
extérieure n'est exercée : la corde oscille alors en régime libre.
L’existence de conditions aux limites oriente vers le choix d'une solution stationnaire :
y(x,t) = A.cos (kx + ¢).cos( ot + @)
Les conditions aux limites imposent :

y(0,t)= 0=cos (¢)=0= ¢ =-7/2.
y(x, t) = A.cos (kx - t/2).cos( ot + ¢ ) = A.sin (kx).cos( ot + ¢)

y(L,t)=0=cos (kL -n/2) = sin(kL) =0
= L=nn/k=n.A/2avecn e N'.
Les différentes valeurs de n correspondent aux différents modes propres de la corde.

Les pulsations propres de la corde sont

nnc
W, = T = nwq
y(x,t
yx.t 0) Yo
0)
_x —
Mode n=1 Mode n=2 Mode n=3
Neoeuds pourx=0etx=L Noeuds pourx=0,x=L/2etx=L Nceuds pourx=0,x=1L/3,
A/2 =L A2/2=L/2 x=2L/3etx=L;A3/2=L/3

Pour n = 1, on observe le mode fondamental.

_ . TX Tc
y1(x,t) = A; sin(kyx) .cos(w,t + ¢;) = A;sin (T) .COS (T t+ (pl)

Les modes supérieurs sont appelés modes harmoniques :
le mode n = 2 correspond a ’harmonique de rang 2

2mx 2mc
y2(x,t) = Ay sin(k,x) . cos(w,t + @,) = A, sin (T) .COS (T t+ <p2>

le mode n correspond a ’harmonique de rang n

nmwx nmc
Yn(x, t) = A, sin(k,x) .cos(w,t + @,) = Ay, sin (T) .COS (Tt + (pn)

Solution générale de I'équation de la corde de guitare en régime libre :

Le mouvement général de la corde est une superposition des différents modes propres :

- - - nmwx nmc
y(x, t) = Z Yn(x, t) = Z A,.sin(k,x) . cos(w,t + @) = Z A,.sin (T) . COS (Tt + <pn)
n=1 n=1 n=1

12



Les constantes A, et ¢, sont fixées par les conditions initiales, c.a.d par la donnée de :

y(x,0) et (oy/ot) (%, 0).
At=0,onaen effet:

y(x,0) = Z A,.sin(k,x) .cos(p,)
oo n=1 ©o
0
6_3t] (x,0) = — Z An.%sin(knx) .sin(g,) = z B,,.sin(k,x)
n=1 n=1

On reconnait les développements en série de Fourier de deux fonctions impaires de période 2L ; la
connaissance de y(x, 0) et ( dy/ot) (x,0) sur l'intervalle [0,L] est donc suffisante pour en obtenir le
développement en série de Fourier, sil'on prolonge ces fonctions en les rendant périodiques de
période 2L.

2. Régime forcé : corde de Melde :

Corde de Melde (1852) : la corde de Melde est
une corde dont les extrémités sont considérées
comme fixes, animée par un vibreur de
pulsation » variable.

amplitude de vibration
a) du vibreur

a %@@ La corde entre en résonance lorsque

I'amplitude des ventres est maximale.

ventre de vibration

Expérimentalement, on observe que le
phénomene de résonance se produit
lorsque la pulsation ® du vibreur est 'une
des pulsations propres de la corde, soit :

nceud de vibration i

A
A

Nt~
N~

Ve i s G SCERIS S NS e N
~

Doc. 9. Corde de MELDE excitée par une fréquence variable a tension et longueur
constantes.

a. Fréquence quelconque.

b. Premiére résonance.

¢. Deuxiéme résonance.

Nous pouvons observer que ces oscillations se font sur place et ne se propa-
gent pas : nous dirons que la corde est le siege d’ondes stationnaires.

Démontrons que le modéle des ondes établi permet de retrouver que la résonance a lieu pour les
pulsations propres.

A cause de la présence de condition aux limites on choisit pour y(x,t) une solution stationnaire :

13
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y(X, t) = A.cos (kx + ¢).cos( ot + @)

Pour faciliter la résolution on pose les conditions aux limites suivantes :
y(0,t) = 0 et y(L,t) = Yo.cos(mt) imposée par la présence du vibreur en x = L

y(0,t) = 0= cos (¢) =0 = ¢ = £ /2, choisissons ¢ = - /2.

y(L, t) = A.cos (KL - ©/2).cos( ot + ¢ )= Yo.cos(wt)
Yo.cos(wt) =A.sin (kL).cos( ot + ¢ ) = Asin(kL) =Yoetp=0

Yo
sin (kL)

d'ouy(xt) = .sin(kx).cos(wt)

Yo
sin (kL)
On obtient dans ce modele une amplitude infinie a la résonance, car dans ce modéle on a négligé
les frottements de I'air.

La résonance est obtenue lorsque 'amplitude A = est maximale donc pour sin(kL) = 0.

sin(KL) = 0 donc kL = n7 soit % = ”L_” d'otl @, = %
CQFD : Les fréquences de résonance de la corde de Melde

(régime forcé) sont les fréquences propres de la corde pincée
(régime libre)

3. Notions musicales :

Une octave est l'intervalle de fréquence f, 2f.
Deux notes a I'octave sonnent de maniere semblable, aussi portent-elles le méme nom ; on les
différencie par un numéro d’octave placé en indice.

Une octave est divisée en 12 demi-tons formée des notes successives :

Dp dldse Fi digse Fa dasa Eol diesa Ladigése
au K& bEmo Hi hémal = bemol Lsbemal = hemol

T - |
i e e e |
¥

DO-DO #-RE-RE# (= MIb )-MI-FA-FA#-SOL-SOL #-LA-LA# (= SIb)-SI-DO
H# = diése : éléve la note d’'un demi-ton ;
b = bémol : abaisse la note d'un demi-ton.
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Dans la gamme tempérée, deux demi-tons successifs ont un rapport de fréquence constant et égal
3 21/12,

La relation « nom-fréquence » nécessite une référence : le Las de fréquence f = 440 Hz.

Certains intervalles sonnent de maniere plus harmonieuse que d’autres :

e [l'octave;

e la quinte correspondant a 7 demi-tons : exemple : do-sol f2 / fi= 27/12~3/2 (a 0,1 % pres ) ;
e latierce majeure correspondant a 4 demi-tons : exemple : do-mi.

Un son musical n’est pas composé que d’une seule fréquence, mais comporte en général de
nombreux harmoniques ; on le caractérise par 3 grandeurs :

e lintensité, liée a 'amplitude des vibrations ;

e la hauteur, liée a la fréquence fondamentale du son ;

e le timbre, lié au spectre du son.

IV. Onde dans une ligne a constantes réparties, cable coaxial
1. Equation de propagation

Le cable est composé de deux conducteurs cylindriques coaxiaux séparés par un isolant.
Le conducteur central, cylindre de rayon a, constitue « I'ame » du cable, le conducteur extérieur,
de rayon b, constitue la « gaine ».

isolant

Une tranche infinitésimale d’épaisseur dx d’une ligne ¢€lectrique bifilaire peut-étre modélisée par le
schéma ci-contre, comportant une inductance élémentaire dL = Adx et une capacité élémentaire dC =
I' dx. On traite ce circuit de faible dimension dans le cadre de I’ARQS.

i(xt) Adx i(x+dx,t)

[ [
» >

u(x,t) I.dx — u(x+xd,t)

Remarque : dans ce modele sans pertes on néglige la résistance linéique r du cable et la
conductance linéique g entre 'ame et la gaine.

La loi des mailles s’écrit :

di
u(x,t) — A dx.& —u(x+dx,t) =0
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La loi des noeuds s’écrit :

du
i(x,t) =T. dx.a +i(x +dx,t)

On cherche a établir les équations d’onde dont u(x,t) et i(x,t) sont solutions, qui s’écrivent

forcément sous la forme :
0%u 1 9%u 8% 1 9%

dx2 c? ot? dx2 c2 0t2

2
On dérive (1) par rapport a X pour former g— et (2) par rapport a t pour former — ou

ot 2"
On peut appliquer le critére de Schwartz — (%) = :t ( P ) lorsque les variables x et t sont
indépendantes. On en déduit alors que
0%u AT 0%u
0x? at?
2 .
On dérive (1) par rapport a t pour former g > et (2) par rapport a x pour former Py ;
On peut appliquer le critere de Schwartz — (Z—I;) = ;t (gu) On en déduit alors que
02 2%
— = Al—
d0x? at?
La célérité est :
1
C=—
VAT

2. Impédance caractéristique

Le cable coaxial est fermé en x = L sur une 1mpedance de charge Zu. En TP on prend

simplement 1,
x=0 x=1L

3 i(x, t) Ame du cable §

u(x,t)
Zu
Conducteur extérieur
T s |
o '«— Cable coaxial —
Générateur Impédance

de charge

Mettre une résistance impose apriori une condition a limite, et donc I'apparition d’'une onde
réfléchie. Cependant, pour une certaine valeur de cette résistance, appelée impédance
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caractéristique, on n’observe aucune onde réfléchie. Déterminons la valeur de cette
impédance caractéristique notée Rc.

La présence de Rc impose en x = L u(L,t) = Rc.i(Lt)
ou ai

Or pour tout x u(x,t) et i(x,t) sont liés par la relation (1) précédente : — = AE

Par hypothese u(x,t) est une onde progressive se propageant dans le sens x croissant donc
Ju du da _ du ( 1)

u(x,t) =u(t-x/c) =u(a) en posant o =t -x/c et—=—.——=—.(—=

De méme i(x,t) est une onde progressive se propageant dans le sens x croissant donc i(x,t)
i _ 9 da _ i

=i(t-x/c) =u(a) en posant a =t -x/c et == o

10u .. O(u—Aci)

. . ai ) .
En utilisant la relation (1) : P Aé soit —— = 0 d’ou u(x,t) - Aci(x,t) = const.

A priori les fonctions u(x,t) i(x,t) sont toujours de valeur moyenne nulle donc const = 0.
Cette relation est valableen x = L u(L,t) = Ac.i(L,t) et par identification avec la loi

d’Ohm en x =L, on trouve
A
Rc=Ac= \/;

Rc est I'impédance caractéristique de ligne telle qu’il n’existe pas d’onde réfléchie.

Remarque : on peut faire cette démonstration avec des OPH directement en complexe, c’est
plus simple...

Réflexion en bout de ligne (cf TP)
Lorsque en x = L, on met un court-circuit R. = 0 et u(L,t) = 0.

On observe alors une onde de tension réfléchie inversée par rapport a I'onde incidente.

Lorsque en x = L, on laisse le circuit ouvert RL =00 et i(L,t) = 0.
On observe alors une onde de tension réfléchie non-inversée par rapport a 'onde incidente.
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