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Ondes : chapitre 1 Equation de D’Alembert et solutions 
 

Notions et contenus Capacités exigibles CdE 
6.1. Phénomènes de propagation non dispersifs : équation de d'Alembert  
6.1.1. Propagation unidimensionnelle  
Ondes transversales sur une 
corde vibrante  

É tablir l’é quation d’ondé dans le cas d’uné 
corde infiniment souple dans 
l’approximation dés pétits mouvements 
transverses. 

 

Équation de d'Alembert. 
Onde progressive. Onde 
stationnaire 

Idéntifiér uné équation dé d’Alémbért. 
Exprimer la célérité en fonction des 
paramètres du milieu. 
Citer des exemples de solutions de 
l’équation dé d’Alémbért 
unidimensionnelle. 

CdE 2 : 23.8  

Ondes progressives 
harmoniques. 
 
 
 
 
Ondes stationnaires 
harmoniques. 

Établir la relation de dispersion à partir de 
l’équation dé d’Alémbért. Utilisér la 
notation complexe. 
Définir lé véctéur d’ondé, la vitéssé dé 
phase.  
 
Décomposer une onde stationnaire en 
ondes progressives, une onde progressive 
en ondes stationnaires. 

 

Conditions aux limites. 
 
Régime libre : modes propres 
d’uné cordé vibranté fixéé à sés 
deux extrémités. 
 
  
Régime forcé : corde de Melde. 
 

Justifier et exploiter des conditions aux 
limites. 
 
Définir et décrire les modes propres.  
Construire une solution quelconque par 
superposition de modes propres.  
 
Associer mode propre et résonance en 
régime forcé. 

 

Ondes de tension et de courant 
dans un câble coaxial. 
 
 
 
 
 
Impédance caractéristique. 
 
 
Réflexion en amplitude sur une 
impédance terminale. 
 

Décrire un câble coaxial par un modèle à 
constantes réparties sans perte. 

Établir les équations de propagation dans 
un câble coaxial sans pertes modélisé 
comme un milieu continu caractérisé par 
une inductance linéique et une capacité 
linéique 
 
Établir l’éxpréssion dé l’impédancé 
caractéristiqué d’un câblé coaxial. 
 
Étudier la réflexion en amplitude de 
tension pour une impédance terminale 
nulle, infinie ou résistive.  

CdE 2 : 24.11 
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1ère année, 1er semestre 
Thème 1 : ondes et signaux (1) 

1.6. Propagation d’un signal  

Propagation d’un signal dans un milieu  illimité, non dispersif et transparent  

Onde progressive dans le 
cas d’une propagation 
unidimensionnelle non 
dispersive.  

Célérité, retard temporel. 
 

Modèle de l’onde 
progressive sinusoïdale 
unidimensionnelle. Vitesse 
de phase, déphasage, 
double périodicité spatiale et 
temporelle. 

Écrire les signaux sous la forme f(x-ct) ou 
g(x+ct). Écrire les signaux sous la forme f(t-x/c) 
ou g(t+x/c). Prévoir, dans le cas d’une onde 
progressive, l’évolution temporelle à position 
fixée et l’évolution spatiale à différents instants. 
 

 

Citer quelques ordres de grandeur de 
fréquences dans les domaines acoustique, 
mécanique et électromagnétique. 
Établir la relation entre la fréquence, la 
longueur d’onde et la vitesse de phase. 
Relier le déphasage entre les signaux perçus 
en deux points distincts au retard dû à la 
propagation. 

 
Mesurer la vitesse de phase, la longueur 
d’onde et le déphasage dû à la propagation 
d’un phénomène ondulatoire. 

CdE 1 : 2.13 à 
2.15 

Milieux dispersifs ou non dispersifs.   Définir un milieu dispersif.  
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 Rappels de première année  
 
Vous pouvéz visualisér l’animation : Onde sur une corde 

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html 
 
L’amplitudé dé la cordé y(x,t) varié én fonction du témps t ét dé la position x du point sur la cordé. 
La propagation de la déformation de la corde à la vitesse (ou célérité) c se fait sans déplacement 
dé matièré, mais avéc propagation d’énérgié, ici sous formé cinétiqué. 
 
Propagation d’uné déformation dans lé séns x croissant à la célérité c : 

 
y(x,t) = y(0,0) = y(0, t - ) où 
 est la durée mise à la 
déformation pour parcourir la 
distance x à la célérité c = x /  
 

y(x,t) = y (0, t – x/c) = y(t-x/c)  
 
Une onde progressive dans la 
direction x, dans le sens x 
croissant à la célérité c est 
modélisée par la fonction  

y(x,t) = y(t-x/c) 
 
 

 
 
Propagation d’uné déformation dans lé séns x décroissant à la célérité c : 
 

y(x,t) = y(0,0) = y(0, t - ) où  est 
la durée mise à la déformation 
pour parcourir la distance -x à la 
célérité c = - x /  
ici x est négatif, or une distance 
est toujours positive. 
 

y(x,t) = y (0, t + x/c) = y(t + x/c)  
 
Une onde progressive dans la 
direction x, dans le sens x 
décroissant à la célérité c est 
modélisée par la fonction  

y(x,t) = y(t+ x/c) 
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https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html
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I. Equation de propagation d’une onde sur une corde : 
 
On considère une corde homogène et sans raideur sur laquelle se propage une déformation 
verticale y(x,t).  
A l’équilibré la cordé ést au répos sur l’axé x. Elle est tendue grâce à une petite masse m 
suspendue au bout de la corde via une poulie.  
On supposé qué lors dé la propagation dé la déformation cétté pétité massé résté à l’équilibré. 
 
Le mouvement se produit perpendiculairement à la direction de propagation : l’ondé ést 
transversale. 
 
 
 
 
 
 
 
 
 
 
On véut établir l’équation du mouvémént d’un élémént dé longuéur dℓ dé la cordé de masse dm. 
 

 
A l’instant t l’élémént dℓ dé la cordé ést én mouvémént dé translation vértical sélon l’axé y. 

Cet élément de corde est soumis de la part du reste de la corde, à une tension à gauche 𝑇⃗ (x,t) et à 

une tension à droite 𝑇⃗ (x+dx,t), tangéntés à la cordé au point d’application, ainsi qu’à son poids, 
négligé devant la tension de la corde. 
 

D’après lé pfd :  dm𝑎  = 𝑇⃗ (x,t) + 𝑇⃗ (x+dx,t) 
 
On projétté sur lés axés, sachant qué lé mouvémént dé la cordé n’a liéu qué sélon y ax = 0 

Sur Ox :  0 = -cos((x,t)).||𝑇⃗ (x,t)||+ cos((x+dx,t)).||𝑇⃗ (x+dx,t)|| 

Sur Oy : dm
𝜕2𝑦

𝜕𝑡2  = -sin((x,t)).||𝑇⃗ (x,t)||+ sin((x+dx,t)).||𝑇⃗ (x+dx,t)|| 

 
 
Les mouvements de la corde sont transversaux et petits ; én appélant α(x,t) l’anglé éntré la cordé 
ét l’horizontalé, on a, à l’ordré lé plus bas :  

cosα ≃ 1 ; sin α(x)  ≃α(x)  
 

Sur Ox :  0 = -||𝑇⃗ (x,t)||+ ||𝑇⃗ (x+dx,t)||      

x 

x 

α(x+dx,t) 

𝑻⃗⃗ (𝒙 + 𝒅𝒙, 𝒕) 

y(x,t) 

x x+dx 

𝑻⃗⃗ (𝒙, 𝒕) 

α(x,t) x 

dℓ 

y 

x x+dx 

A l’instant initial la cordé ést à 
l’équilibré 

y 

m𝑔  

𝑇𝑜
⃗⃗  ⃗ 
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Sur Oy : dm
𝜕2𝑦

𝜕𝑡2  = -(x,t).||𝑇⃗ (x,t)||+ (x+dx,t)).||𝑇⃗ (x+dx,t)|| 

 

Sur Ox :  ||𝑇⃗ (x,t)|| = ||𝑇⃗ (x+dx,t)|| la tension est donc uniforme sur toute la corde et on pose 

||𝑇⃗ (x,t)|| = To ténsion dé la cordé à l’équilibré 
 

Sur Oy : dm
𝜕2𝑦

𝜕𝑡2  = (-(x,t)+ (x+dx,t)).To = 
𝜕𝛼

𝜕𝑥
.dx.To 

 
Comme les angles sont petits, on peut 
assimilér l’élémént dé longuéur dℓ dé la 
cordé à l’hypoténusé d’un trianglé 
rectangle et poser 
 

  tan α = 
𝜕𝑦

𝜕𝑥
 ét dx = dℓ.cos  dℓ 

 
Soit µ la masse linéique de la corde en kg.m-1 

dm = µdℓ = µ dx 

 

Sur Oy : µ dx 
𝜕2𝑦

𝜕𝑡2  = 
𝜕2𝑦

𝜕𝑥2.dx. To 

 
On en déduit l'équation vérifiée par y(x,t) : 
 

𝝁.
𝝏𝟐𝒚(𝒙, 𝒕)

𝝏𝒕𝟐
= 𝑻𝟎.

𝝏𝟐𝒚(𝒙, 𝒕)

𝝏𝒙𝟐
 

 
En posant  

𝑐 =  √
𝑇0

𝜇
 

 
On obtiént l’équation de d’Alembert ou équation d’onde : 
 

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑡2
= 𝑐2.

𝜕2𝑦(𝑥, 𝑡)

𝜕𝑥2
 

 
A partir d’uné équation aux diménsions sur l’équation d’ondé, on remarque que c s’éxprimé én 
m.s-1 : c’ést uné célérité, c’ést la célérité dé l’ondé. 
 
On péut fairé uné mêmé équation aux diménsions sur l’éxpréssion dé c(TO, µ) où To est la tension 
de la corde en N et µ sa masse linéique en kg.m-1. 
La célérité dé l’ondé ést d’autant plus grandé qué la ténsion To est grande et la masse linéique µ 
faible. 
 

Vous pouvéz visualisér l’animation : Ondé sur uné cordé ét fairé variér la ténsion dé la cordé 
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html 

 
 
L’équation d’onde précédente modélise une déformation y qui se propage dans la direction 
x à la célérité c. 
 

x 

α(x,t) 

y 

x x + dx 

y + dy 

y 

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html
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Jéan lé Rond D’Alémbért ( 1717 -1783 ) : mathématicien, philosophe et 
encyclopédiste français. 
 
 
 
 
 
 
 

II. Les solutions de l’équation de D’Alembert 
 

1. Caractères généraux de l’équation de d’Alembert 
 
L’équation dé d’Alémbért à uné diménsion s’écrit toujours :  

𝜕2𝑦

𝜕𝑡2
= 𝑐2.

𝜕2𝑦

𝜕𝑥2
 

C'est une équation linéaire. 
 
y est la grandeur physique qui se propage 
x est la direction de la propagation 
c est la vitesse de propagation ou célérité de l'onde. 
 
Cette célérité fait intervenir un terme dynamique exprimant la raideur du milieu : T0 comparé à 
un térmé d’inértié : µ. 
 
On peut changer x en –x sans changér l’équation, donc sés solutions : le phénomène décrit par 
cétté équation péut êtré décrit dans un séns ou dans l’autré dé la mêmé manièré : il est réversible 
spatialement. 
 
On peut changer t en –t sans changér l’équation, donc sés solutions : le phénomène décrit par 
cette équation est réversible temporellement.  
 

 2. Solutions progressives de l’équation de d’Alembert 
 
Lés solutions lés plus généralés dé l’équation dé d’Alémbért à uné diménsion s'écrivént donc :  

y(x, t) = f( t – x/c ) + g( t+ x/c ) , 
c étant la célérité des ondes. 
 
La solution en t – x/c décrit une onde progressive progressant dans le sens des x croissants au 
cours du temps, avec la célérité c. On dit qué l’ondé sé propage. 
 
De même, la solution g(t + x/c ) décrit une onde progressive progressant dans le sens des x 
décroissants au cours du temps, avec la célérité c. 
 
Si y est transverse sa direction de vibration est perpendiculaire à Ox. (corde, ondes électromagnétiques) 

Si y est longitudinale sa direction de vibration est colinéaire à Ox. (onde sonore, ondes de compression 

sur un ressort) 

 
 

http://fr.wikipedia.org/wiki/1783
http://fr.wikipedia.org/wiki/Math%C3%A9maticien
http://fr.wikipedia.org/wiki/Philosophe
http://fr.wikipedia.org/wiki/Encyclop%C3%A9distes
http://fr.wikipedia.org/wiki/France
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3. Les ondes progressives harmoniques (OPH) 

 
Vous pouvéz visualisér l’animation : Ondé sur uné cordé 
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html 
 

si y(x,t) = Yo cos ( (t – x/c) + ) = Yo. cos ( t – .x/c + ) = Yo. cos ( t – k.x + ) 

 

 

 

 

Périodicité temporelle T : 𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
  f : fréquence ;  : pulsation 

Périodicité spatiale, longueur d’onde   On pose 𝑘⃗ =
𝜔

𝑐
𝑢⃗ =

2𝜋

𝑐𝑇
𝑢⃗ =

2𝜋

𝜆
𝑢⃗ , le vecteur d’onde et 𝑢⃗  la 

direction de propagation de l’onde. 

 

Vitesse de phase : v =   k = c 

 

 est la phase de l’onde à l’origine -      

 

Notation complexe uniquement pour les OPH: 

  

Donc 
𝜕𝑦

𝜕𝑡
= 𝑗𝜔𝑦 

 

Et 
𝜕𝑦

𝜕𝑥
= −𝑗𝑘𝑦 si l’onde se propage dans la direction + 𝑢⃗ x car 𝑦(𝑡, 𝑥) = 𝑌𝑜 𝑒𝑥𝑝 𝑗 (𝜔𝑡 − 𝑘. 𝑥) 

 
𝜕𝑦

𝜕𝑥
= +𝑗𝑘𝑦 si l’onde se propage dans la direction - 𝑢⃗ x car 𝑦(𝑡, 𝑥) = 𝑌𝑜 𝑒𝑥𝑝 𝑗 (𝜔𝑡 + 𝑘. 𝑥) 

 

 

Relation de dispersion associée à l’équation de D’Alembert 

 

Remplacer les dérivées partielles dans l’équation de D’Alembert : 

 
𝜕2𝑦

𝜕𝑡2 = 𝑐2
𝜕2𝑦

𝜕𝑥2  donne (𝑗𝜔)2𝑦 = 𝑐2(−𝑗𝑘)2𝑦  d’où  

  

 

 

C’est la relation de dispersion, elle exprime k2 en fonction de  

 

k = +   c pour les ondes se propageant dans le sens + 𝑢⃗ x 

k = -    c pour les ondes se propageant dans le sens -  𝑢⃗ x 

 

 

  

y(x,t) = Yo. cos ( t – k.x + ) 

𝑘2 = (
𝜔

𝑐
)
2

 

   y(x,t) = Yo. ej(t – kx) avec Yo = YO.ej 

 

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html
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4. Solutions stationnaires de l’équation de D’Alembert 
 

a. Forme des solutions : 
Une onde stationnaire est une onde qui s'écrit : y(x,t) = F(x).G(t). 
On montre que les seules solutions acceptables physiquement sont de la forme :  

 
y(x,t) = A.cos ( kx +  ).cos( t +  )  avec    -       
 
L’amplitudé dé y(x,t) ést A.cos(kx+). 

 
Attention, lorsqu’on parle d’onde stationnaire y(x,t) dépend toujours du temps ! 
 
Vérifiér qué l’ondé stationnairé ést solution dé l’équation dé D’Alémbért. 
 

b. Nœuds de vibration :  
 
On appelle nœud de vibration les points xN pour lésquéls l’amplitudé ést nullé : cos(kxN + )= 0 

kxN+ = 
𝜋

2
[ = 

𝜋

2
+ 𝑝 où p est un entier relatif. 

D’où xNp = 
𝜋

2𝑘
+ 𝑝

𝜋

𝑘
−

𝜙

𝑘
 donné la position du nœud p 

 
On appelle ventre de vibration les points pour lesquels l'amplitude de vibration est maximale. 
 
La distancé éntré déux nœuds dé vibration consécutifs xNp+1 - xNp est égale à /2,  
La distancé éntré un véntré ét un nœud consécutif ést /4. (rappel : k = 2) 

 
 

 
Onde stationnaire représentée à 3 instants 
différents : t, t et t. 
La position d’un nœud né changé pas dans lé 
temps. 
L’amplitudé dés véntrés varié dans lé témps. 
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c. Réalisation d’une onde stationnaire : 
 

Animation  Ondes Stationnaires 
http://www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Ondes/ondes_station 

naires/stationnaires.php 
 

 

 

 
 

Superposition de deux ondes se propageant en sens contraire : 
Deux ondes de même amplitude (respectivement en vert et en rouge) se propagent en sens contraire. 
L'onde résultante est représentée en bleu. On peut constater qu'elle ne se propage pas : on dit qu'elle 
est stationnaire. 

Il éxisté dés nœuds dé vibration, c’ést-à-diré dés points fixés où l’amplitudé dé l’ondé ést toujours 
nullé. Éntré déux nœuds, l’amplitudé dé l’ondé varié avéc lé témps. 
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d. Onde stationnaire sur une corde :  
Si le milieu est infini, une onde émise en O à t = 0 se propage indéfiniment. 
En général, le milieu est fini, et à ses extrémités se produisent des réflexions. 
 
https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html 
 
On considère une corde fixée à l'extrémité x = 0 sur laquelle arrive une onde progressive 
harmonique incidente :  

yi(x, t) = A.cos(t -kx ) en notation complexe yi(x,t) = A.ej(t – kx) 

 
En x = 0, on doit avoir : 

y(0, t ) = 0 t 
condition qué né vérifié pas l’ondé incidénté. 
 
On constaté qu’il éxisté uné ondé réfléchié, qué l’on péut écriré de manière très générale : 

yr = A’.cos(’t + k’x+ ) en notation complexe yr(x,t) = A’.ej(’t + k’x) 

  
et telle que : 

ytotale(0, t) = yi (0,t ) + yr(0,t ) = 0 
0 = A. ejt + A’ .ej’t 

Expression valable pour tout t 

{
𝜔′ = 𝜔
𝐴′ = −𝐴

𝑘′ = 𝑘

 

On calcule alors :  
ytot(x, t) = A.ej(t – kx) -A. ej(t + kx) =A. ejt  ( e-j kx - e-j kx) = -2jA sin(kx). ejt  = 2A sin(kx). ej(t - )  

 
soit en réèl : ytot(x,t) = 2Asin(kx).cos(t - ) =  2Asin(kx).sin(t) 

 

On rémarqué qu’on n’a plus dé térmés de propagation (t – x/c) ou (t + x/c) ! On obtient une 
solution à variables séparées de la forme y(x,t) = F(t).G(x) 
 

Remarque 1 : On peut définir le coefficient de réflexion en amplitude par r = 
𝑦𝑟(𝑥=0,𝑡)

𝑦𝑖(𝑥=0,𝑡)
. Ici r = - 1. 

 
Remarque 2 : dans le cas général d'un changement de milieu en x = 0, une partie de l'onde est 
transmise et une partie réfléchie ; on définit alors le coefficient de transmission en amplitude par  

t = 
𝑦𝑡(𝑥=0,𝑡)

𝑦𝑖(𝑥=0,𝑡)
, yt(x,t) étant l'onde transmise. 

 
Nous avons vu qu’uné ondé stationnairé péut êtré considéréé commé la supérposition dé déux 
ondes progressives de même amplitude se propageant en sens contraires. 
De même, une onde progressive harmonique peut être considérée comme la superposition de 
deux ondes stationnaires de même amplitude et en quadrature :  

y(x,t) = Yo.cos(t – kx) = Yo.[cos(t).cos(kx) + sin(t).sin(kx)] 

= Yo.[cos(t).cos(kx) + cos(t - 
𝜋

2
).cos(kx - 

𝜋

2
)] 

 
Il est donc équivalent pour un problème donné de rechercher des solutions stationnaires ou 
progressives, mais :  

• Lorsque le milieu est illimité, il est préférable de travailler avec des ondes progressives ; 
• Lorsque le milieu est fini, il est préférable de travailler avec des ondes stationnaires. 

https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_fr.html
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III. Modes propres et forcés d'une corde sous tension  

1. Régime libre : corde pincée de guitare 
a. Spectre d’une corde de guitare pincée 

Vous pouvez écouter le fondamental émis par une corde pincée en fonction de la longueur de la 
corde et la tension appliquée : 

http://physique.ostralo.net/corde_guitare/ 

y(x, t) = A.sin (kx).cos( t +  ) avec k =   c    f = 
𝑐

2𝐿
= 

1

2𝐿
√

𝑇

µℓ
 

 
Pour une corde de guitare la 
fréquence du fondamental dépend 
de la longueur L, de la tension T et 
de la masse linéique µℓ de la corde. 
La longuéur du manché d’uné 
guitare classique est de 65,2 cm. 

Fondamental : f1 = 
𝑐

2𝐿
= 

1

2𝐿
√

𝑇

µℓ
 

 
 

Lé son énténdu ést d’autant plus riché qué lé nombré d’harmoniqués ést grand : c’ést lé timbré 
d’un instrumént de musique. 
 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) =∞
𝑛=1  ∑ 𝐴𝑛.

∞
𝑛=1 sin(𝑘𝑛𝑥) . cos(𝜔𝑛𝑡 + 𝜑𝑛) avec kn = 𝜔𝑛/c 

 

FREQUENCE 
FONDAMENTALE 
Hz 
338 
253 
201 
151 
113 
76 

http://physique.ostralo.net/corde_guitare/
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b. Modélisation de la corde vibrante 
On considère une corde de longueur L fixée aux deux extrémités, sur laquelle aucune action 
extérieure n'est exercée : la corde oscille alors en régime libre. 
 
L’éxisténcé dé conditions aux limités oriénté vérs lé choix d’uné solution stationnairé : 

 
y(x, t) = A.cos (kx + ).cos( t +  ) 

 
Les conditions aux limites imposent : 

y(0, t) =  0  cos () = 0   = - /2. 
y(x, t) = A.cos (kx - /2).cos( t +  ) = A.sin (kx).cos( t + ) 

 
 
y(L, t ) = 0  cos (kL - /2) =  sin(kL ) = 0 

 L = n. /k = n. / 2 avec n  N*. 
 
Les différentes valeurs de n correspondent aux différents modes propres de la corde. 
 
Les pulsations propres de la corde sont  

𝝎𝒏 =
𝒏𝝅𝒄

𝑳
= 𝑛𝝎𝟏 

 

 
Nœuds pour x = 0 ét x = L  Nœuds pour x = 0, x = L/2 ét x = L     Nœuds pour x = 0, x = L/3,  
 = L   = L/ 2     x = 2L/3 et x = L ;  = L/3 
 
Pour n = 1, on observe le mode fondamental. 

𝑦1(𝑥, 𝑡) = 𝐴1 sin(𝑘1𝑥) . cos(𝜔1𝑡 + 𝜑1)  = 𝐴1 sin (
𝜋𝑥

𝐿
) . cos (

𝜋𝑐

𝐿
𝑡 + 𝜑1) 

 
Les modes supérieurs sont appelés modes harmoniques : 
lé modé n = 2 corréspond à l’harmoniqué dé rang 2 

𝑦2(𝑥, 𝑡) = 𝐴2 sin(𝑘2𝑥) . cos(𝜔2𝑡 + 𝜑2)  = 𝐴2 sin (
2𝜋𝑥

𝐿
) . cos (

2𝜋𝑐

𝐿
𝑡 + 𝜑2) 

 
lé modé n corréspond à l’harmoniqué dé rang n 

𝑦𝑛(𝑥, 𝑡) = 𝐴𝑛 sin(𝑘𝑛𝑥) . cos(𝜔𝑛𝑡 + 𝜑𝑛)  = 𝐴𝑛 sin (
𝑛𝜋𝑥

𝐿
) . cos (

𝑛𝜋𝑐

𝐿
𝑡 + 𝜑𝑛) 

 
Solution généralé dé l’équation dé la cordé dé guitaré én régimé libré : 
 
Le mouvement général de la corde est une superposition des différents modes propres : 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) =

∞

𝑛=1

 ∑ 𝐴𝑛.

∞

𝑛=1

sin(𝑘𝑛𝑥) . cos(𝜔𝑛𝑡 + 𝜑𝑛) = ∑ 𝐴𝑛.

∞

𝑛=1

sin (
𝑛𝜋𝑥

𝐿
) . cos (

𝑛𝜋𝑐

𝐿
𝑡 + 𝜑𝑛) 

y(x,t
0)

x

Mode n=1

y(x,t
0)

x

Mode n=2

y(x,t0
)

x

Mode n=3
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Les constantes An et n sont fixées par les conditions initiales, c.à.d par la donnée de : 

y(x, 0) et ( y/t ) (x, 0). 
 
A t = 0, on a en effet : 

𝑦(𝑥, 0) =  ∑ 𝐴𝑛.

∞

𝑛=1

sin(𝑘𝑛𝑥) . cos(𝜑𝑛) 

𝜕𝑦

𝜕𝑡
(𝑥, 0) =  − ∑ 𝐴𝑛.

𝑛𝜋𝑐

𝐿

∞

𝑛=1

sin(𝑘𝑛𝑥) . sin(𝜑𝑛) = ∑ 𝐵𝑛.

∞

𝑛=1

sin(𝑘𝑛𝑥) 

 
On reconnait les développements en série de Fourier de deux fonctions impaires de période 2L ; la 
connaissance de y(x, 0) et ( y/t ) (x,0) sur l'intervalle [0,L] est donc suffisante pour en obtenir le 
développement en série de Fourier, si l'on prolonge ces fonctions en les rendant périodiques de 
période 2L. 
 

2. Régime forcé : corde de Melde :   
    
Corde de Melde (1852) : la corde de Melde est 
une corde dont les extrémités sont considérées 
comme fixes, animée par un vibreur de 
pulsation  variable. 

 
La corde entre en résonance lorsque 
l’amplitudé dés véntrés ést maximalé.  
 
Expérimentalement, on observe que le 
phénomène de résonance se produit 
lorsque la pulsation  du vibreur est l'une 
des pulsations propres de la corde, soit : 
 

𝝎 = 𝝎𝒏 =
𝒏𝝅𝒄

𝑳
=

𝒏𝝅

𝑳
√

𝑻𝟎

𝝁
 

 
 
 
 
 
 
 
 
 
 
 

Démontrons que le modèle des ondes établi permet de retrouver que la résonance a lieu pour les 
pulsations propres. 
 
A cause de la présence de condition aux limites on choisit pour y(x,t) une solution stationnaire : 

http://t0.gstatic.com/images?q=tbn:ANd9GcSy6Or8LGyPomH_Zw0mVCNYQsRgRFxbBVF1JbgdC2OIA5cJT7sL

0 

x 

L 

http://www.google.fr/imgres?q=corde+de+Melde&um=1&hl=fr&rlz=1T4HPEB_frFR223FR224&biw=1024&bih=509&tbm=isch&tbnid=q3jcLI9njvN3wM:&imgrefurl=http://f6gqg.pagesperso-orange.fr/Les_antennes__(4).html&docid=xPTnfUliw3GomM&imgurl=http://f6gqg.pagesperso-orange.fr/Melde.jpg&w=450&h=133&ei=hcEBT_KmOsXb8QPsuJWlAQ&zoom=1
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y(x, t) = A.cos (kx + ).cos( t +  ) 

 
Pour faciliter la résolution on pose les conditions aux limites suivantes :  

y(0,t) = 0 et y(L,t) = Yo.cos(t) imposée par la présence du vibreur en x = L 
 

y(0, t) =  0  cos () = 0   = ± /2, choisissons  = - /2. 
 
y(L, t ) = A.cos (kL - /2).cos( t +  )= Yo.cos(t)   
Yo.cos(t)   = A.sin (kL).cos( t +  )  A.sin(kL) = Yo et  =  

 

d'où y(x, t) =
𝑌𝑜

sin (𝑘𝐿)
.sin(kx).cos(t ) 

 

La résonancé ést obténué lorsqué l’amplitudé A = 
𝑌𝑜

sin (𝑘𝐿)
 est maximale donc pour sin(kL) = 0. 

On obtient dans ce modèle une amplitude infinie à la résonance, car dans ce modèle on a négligé 
lés frottéménts dé l’air. 
 

sin(kL) = 0 donc knL = n soit 
𝜔𝑛

𝑐
=

𝑛𝜋

𝐿
 d’où 𝝎𝒏 =

𝒏𝝅𝒄

𝑳
 

 

CQFD :  Les fréquences de résonance de la corde de Melde 
(régime forcé) sont les fréquences propres de la corde pincée 

(régime libre) 
 

3. Notions musicales : 
 
Une octave est l'intervalle de fréquence f, 2f. 
Deux notes à l'octave sonnent de manière semblable, aussi portent-elles le même nom ; on les 
différéncié par un numéro d’octavé placé én indicé. 
 
Une octave est divisée en 12 demi-tons formée des notes successives : 

 
DO-DO♯-RE-RE♯ ( = MIb )-MI-FA-FA♯-SOL-SOL♯-LA-LA♯ ( = SIb )-SI-DO 

♯= dièse : élèvé la noté d’un démi-ton ; 
b = bémol : abaissé la noté d’un démi-ton. 
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Dans la gamme tempérée, deux demi-tons successifs ont un rapport de fréquence constant et égal 
à 21/12. 
 
La relation « nom-fréquence » nécessite une référence : le La3 de fréquence f = 440 Hz. 
 
Cértains intérvallés sonnént dé manièré plus harmoniéusé qué d’autrés :  
• l’octavé ; 
• la quinte correspondant à 7 demi-tons : exemple : do-sol f2 / f1= 27/12  3/2 ( à 0,1 % près ) ; 
• la tierce majeure correspondant à 4 demi-tons : exemple : do-mi. 
 
Un son musical n’ést pas composé qué d’uné séulé fréquéncé, mais comporté én général dé 
nombreux harmoniques ; on le caractérise par 3 grandeurs :  
• l’inténsité, liéé à l’amplitudé dés vibrations ;  
• la hauteur, liée à la fréquence fondamentale du son ; 
• le timbre, lié au spectre du son. 
 

IV. Onde dans une ligne à constantes réparties, câble coaxial  
 

1. Equation de propagation 
 
Le câble est composé de deux conducteurs cylindriques coaxiaux séparés par un isolant.  
Le conducteur central, cylindre de rayon a, constitue « l’âmé » du câble, le conducteur extérieur, 
de rayon b, constitue la « gaine ».  

    
 

Une tranche infinitésimale d’épaisseur dx d’une ligne électrique bifilaire peut-être modélisée par le 

schéma  ci-contre, comportant une inductance élémentaire dL = dx et une capacité élémentaire dC = 

 dx. On traite ce circuit de faible dimension dans le cadre de l’ARQS. 

 
 
 
 
 
 
 
 
 
Remarque : dans ce modèle sans pertes on néglige la résistance linéique r du câble et la 
conductancé linéiqué g éntré l’âmé ét la gainé. 
 
La loi des mailles s’écrit :  

𝑢(𝑥, 𝑡) − Λ. dx.
𝜕𝑖

𝜕𝑡
− 𝑢(𝑥 + 𝑑𝑥, 𝑡) = 0 

       i(x,t)        .dx            i(x+dx,t) 
 

 
         u(x,t)          .dx                                 u(x+xd,t) 

âme 

isolant 

gaine 
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⇔ −
𝜕𝑢

𝜕𝑥
= Λ

𝜕𝑖

𝜕𝑡
 (1) 

La loi des noeuds s’écrit : 

𝑖(𝑥, 𝑡) = Γ. dx.
𝜕𝑢

𝜕𝑡
+ 𝑖(𝑥 + 𝑑𝑥, 𝑡) 

 

⇔ −
𝜕𝑖

𝜕𝑥
= Γ

𝜕𝑢

𝜕𝑡
 (2) 

 
On chérché à établir lés équations d’ondé dont u(x,t) ét i(x,t) sont solutions, qui s’écrivént 
forcément sous la forme : 

𝜕2𝑢

𝜕𝑥2 =
1

𝑐2

𝜕2𝑢

𝜕𝑡2   et  
𝜕2𝑖

𝜕𝑥2 =
1

𝑐2

𝜕2𝑖

𝜕𝑡2  

 
 

On dérive (1) par rapport à x pour former 
𝜕2𝑢

𝜕𝑥2 et (2) par rapport à t pour former 
𝜕2𝑢

𝜕𝑡2 . 

On peut appliquer le critère de Schwartz  
𝜕

𝜕𝑥
(
𝜕𝑖

𝜕𝑡
) =

𝜕

𝜕𝑡
(

𝜕𝑖

𝜕𝑥
) lorsque les variables x et t sont 

indépendantes. On en déduit alors que  
𝜕2𝑢

𝜕𝑥2
= ΛΓ

𝜕2𝑢

𝜕𝑡2
  

 

On dérive (1) par rapport à t pour former 
𝜕2𝑖

𝜕𝑡2 et (2) par rapport à x pour former 
𝜕2𝑖

𝜕𝑥2. 

On peut appliquer le critère de Schwartz 
𝜕

𝜕𝑥
(
𝜕𝑢

𝜕𝑡
) =

𝜕

𝜕𝑡
(
𝜕𝑢

𝜕𝑥
).  On en déduit alors que 

𝜕2𝑖

𝜕𝑥2
= ΛΓ

𝜕2𝑖

𝜕𝑡2
  

 
La célérité est : 

𝑐 =
1

√ΛΓ
 

 
2. Impédance caractéristique 

 
Le câble coaxial est fermé en x = L sur une impédance de charge Zu. En TP on prend 
simplement une résistance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Méttré uné résistancé imposé apriori uné condition à limité, ét donc l’apparition d’uné ondé 
réfléchie. Cependant, pour une certaine valeur de cette résistance, appelée impédance 

( ),i x t

0x =

( ),u x t

x L=

Âme du câble

Conducteur extérieur

Câble coaxial
Impédance
de charge

Générateur

Zu 
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caractéristiqué, on n’obsérvé aucune onde réfléchie. Déterminons la valeur de cette 
impédance caractéristique notée Rc. 
 
La présence de Rc impose en x = L   u(L,t) = Rc.i(L,t) 

Or pour tout x u(x,t) et i(x,t) sont liés par la relation (1) précédente :  −
𝜕𝑢

𝜕𝑥
= Λ

𝜕𝑖

𝜕𝑡
  

 
Par hypothèse u(x,t) est une onde progressive se propageant dans le sens x croissant donc 

u(x,t) = u(t – x/c) = u() en posant  = t – x/c    et 
𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝛼
.
𝜕𝛼

𝜕𝑥
=

𝜕𝑢

𝜕𝛼
. (−

1

𝑐
) 

 
De même i(x,t) est une onde progressive se propageant dans le sens x croissant donc i(x,t) 

= i(t – x/c) = u() en posant  = t – x/c    et 
𝜕𝑖

𝜕𝑡
=

𝜕𝑖

𝜕𝛼
.
𝜕𝛼

𝜕𝑡
=

𝜕𝑖

𝜕𝛼
. 1 

 

En utilisant la relation (1) : 
1

𝑐

𝜕𝑢

𝜕𝛼
= Λ

𝜕𝑖

𝜕𝛼
 soit  

𝜕(𝑢−Λ𝑐𝑖)

𝜕𝛼
= 0 d’où u(x,t) - ci(x,t) = const. 

A priori les fonctions u(x,t) i(x,t) sont toujours de valeur moyenne nulle donc const = 0. 
Cette relation est valable en x = L   u(L,t) = c.i(L,t) et par identification avec la loi 
d’Ohm én x = L, on trouvé  

Rc = c = √
Λ

Γ
 

 
Rc ést l’impédancé caractéristiqué dé ligné téllé qu’il n’éxisté pas d’ondé réfléchié. 

 
Remarque : on péut fairé cétté démonstration avéc dés OPH diréctémént én compléxé, c’ést 
plus simplé… 

 
3. Réflexion en bout de ligne (cf TP) 

 
Lorsque en x = L, on met un court-circuit RL = 0 et u(L,t) = 0. 
On obsérvé alors uné ondé dé ténsion réfléchié invérséé par rapport à l’ondé incidénté. 
 
 
Lorsque en x = L, on laisse le circuit ouvert RL →∞ ét i(L,t) = 0. 
On observe alors une onde de tension réfléchie non-invérséé par rapport à l’ondé incidénté. 
 


