6. Physique des ondes

6.1. Phénomeénes de propagation non dispersifs : équation de d'Alembert

6.1.2. Ondes sonores dans les fluides CdE

Approximation acoustique. Classer les ondes sonores par domaines
fréquentiels.

Justifier les hypothéses de 1’approximation

acoustique par des ordres de grandeur.

Ecrire les équations locales linéarisées : CdE2 :23.7
conservation de la masse, équation

thermodynamique, équation de la dynamique.

Equation de d’Alembert pour la | Etablir I’équation de propagation de la surpression | CdE2 : 23.8

surpression. formulée avec I’opérateur laplacien.

Célérité. Exprimer la célérité en fonction de la température CdE2:23.3
pour un gaz parfait.

Citer les ordres de grandeur de la célérité pour I’air
et pour I’eau.

Densité volumique d’énergie Utiliser les expressions admises du vecteur densité

sonore, vecteur densité de de courant énergétique et de la densité volumique

courant énergétique. d’énergie associés a la propagation de I’onde.

Définir I’intensité sonore et le niveau sonore.

Intensité acoustique, niveau Citer quelques ordres de grandeur de niveaux CdE2:23.1;

sonore. d’intensité sonore. 23.2

Ondes planes progressives Décrire le caractére longitudinal de 1'onde sonore.

harmoniques. Discuter la validité du modé¢le de 1’onde plane en
relation avec le phénomene de diffraction.

Utiliser le principe de superposition des ondes
planes progressives harmoniques.

Impédance acoustique. Etablir et utiliser I’impédance acoustique définie CdE2:234;
comme le rapport de la surpression sur le débit 23.5
volumique ou comme le rapport de la surpression
sur la vitesse.

Onde sonore sphérique Commenter I'expression de la surpression générée

harmonique divergente. par une sphere pulsante : atténuation géométrique,
structure locale.

6.3. Interfaces entre deux milieux

6. 3.1. Cas des ondes sonores

Réflexion, transmission d’une | Expliciter des conditions aux limites a une CdE2:23.6;

onde sonore sur une interface interface. 23.11;

plane entre deux fluides : Etablir les expressions des coefficients de 23.12;23.13

coefficients de réflexion et de
transmission en amplitude des
vitesses, des surpressions et des
puissances sonores.

transmission et de réflexion en amplitude de
surpression, en amplitude de vitesse ou en
puissance dans le cas d’'une onde plane
progressivesous incidence normale.
Relier I’adaptation des impédances au transfert
maximum de puissance.




Ondes : chapitre 2 Ondes sonores dans les fluides

I. Equations de propagation

1. Caractéristiques des ondes sonores

L’onde sonore nécessite un milieu matériel pour se propager.
C’est une onde longitudinale de compression :

Vidéo : animation Son 01

Modg¢le de I’air au repos

o ) Zone ou |’air est comprimé
Zone ou |’air est détendu
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Mode¢le de I’air lors du passage d’une impulsion sonore

20 Hz 20 kHz

Infrasons Son Ultrasons f(Hz)

10¥Hz 1 Hz 10°% Hz 10° Hz

Mod¢élisation d’une onde sonore sinusoidale par des zones de compressions et détentes successives
L’ordre de grandeur de la célérité du son dans I’air a 25°C est de 340 m.s™.

Les parameétres pertinents permettant de modéliser I’onde sonore sont les paramétres du milieu qui
varient lors du passage de I’onde : la pression, la masse volumique, le déplacement donc la vitesse.



2. Approximation acoustique

Une onde sonore est une perturbation mécanique réversible du milieu.

Au passage de I’onde, les paramétres d’état (pression P, vitesse ¥, masse volumique ) ne
subissent que de faibles variations.

On considére un fluide dont I’état d’équilibre correspond au point M tel que OM =7#al’instantta:
P(M,t) =P°, T (M, t) = To, (M, t) = poet 5(M,t) = 0.

Le passage d’une onde acoustique provoque des variations de ces grandeurs :
P(M, ) =P°+p(M,t) ; T (M,t)=To+0(M,¢t) ; u(M,t) =po+w(M,t) et B(M,t) #0.

On fait les hypotheses suivantes :

e On néglige le poids devant les forces de pression ;

e L'écoulement est supposé parfait et adiabatique ; il sera donc isentropique.

e le déplacement & d'une tranche de fluide par rapport a 1'équilibre est petit, ainsi que la vitesse
5%,

at’

e les variations sont petites : P =P° + p avec p << P°; p est la surpression acoustique ;
K=o + pi avec pi << po ; v << ¢ (célérité des ondes acoustiques).

¢ On se place dans ’approximation acoustique :

* v,pet u sont des perturbations par rapport a 1'état d'équilibre ; on les assimilera,
ainsi que leurs dérivées, a des infiniment petits dont on ne conservera dans les équations que
le premier ordre ;

* leurs valeurs moyennes temporelles sont nulles.

Ordres de grandeur : on a couramment p/ P° = i/ po =107 .

3. Equations locales dans I’approximation acoustique

a. Pfd appliqué a une particule de fluide — équation de la dvnamique

Le systéme est une particule de fluide de masse dm = p.dt qui se trouve au point M tel
que OM = 7 aI’instant t qui n’est soumise qu’a la résultante des forces de pressions

dF = —gradP.dr.

dma = —gradP.dt
u.dr(z—f + (. grad)ﬁ) = —gradP.dt

(Mo + (M, t))(z—f + (ﬁm)ﬁ) = —grad(P° + p(M,t))
Or dans le cadre de I’approximation acoustique
Ho >> (M, t)
¥ est un infiniment petit d’ordre 1, g—f I’est également, mais (. W)17~ % est un infiniment
petit d’ordre 2 que 1’on peut négliger devant I’ordre 1
grad(P° +p(M, 1)) = grad(P,) + grad(p(M,t)) = 0+ grad(p(M, 1))

On en déduit I’expression du pfd (appelé aussi équation d’Euler) appliqué a une particule de fluide
dans le cadre de I’approximation acoustique :



o =2 = —grad(p(M, t)) (1)

Dans le cas d’une onde longitudinale se propageant selon Ox : OM=7= XU,
(M, t) = v(x,t) = v(x,)u, ; P(M,t) =P(x,t) =P°+p(x,t) ; W(M, t) = p(x, t) = po + pi(x, t)

aw(xt) _  ap(xt) ;
mo—5 = ax a)

La relation obtenue est la projection de la relation vectorielle sur 1’axe Ox, c’est donc une relation
scalaire.

Remarque : On peut aussi faire un bilan de quantité de mouvement sur I’air en écoulement au
passage de 1’onde.

Considérons une propagation unidirectionnelle selon 1’axe x. Le systéme ouvert est compris entre x
et x +dx

Systéme qui sort de I’ouvert

Ferme a t+dt‘ pendant dt de masse
p gauche - oms = Dms.dt =
I , n(x+dx, tHd)v(x+dx, t+dt)Sdt

C.0) YL G(x+dx, t+db)

X +dx Fp droite

i

Systeme qui

entre dans Fer}me at 'i

I’ouvert pendant i i

dt de masse R

ome = Dme.dt = Ouvert de masse p(x,t)Sdx
p(x,t)v(x,t)Sdt

Pfermé (t +dt) — Pfermé ) = Pouvert (t+dt) + 623; - (pouvert ®) + 6%)2

mouvert(t + dt)vouvert (t + dt) - mouvert(t)vouvert (t) + 6m5175> - 6meT7; =
de(ll(t + dt)vouvert (t +dt) — U(t)vouvert (t))
+ p(x+dx, thdt)v(x+dx, t+dt)Sdtv(x + dx, t + dt) - p(x,)v(x,t)Sdtv(x, t) =
(uv) a(pvv)

Sdx dxSdt
o T T
En appliquant le principe fondamental de la dynamique projeté sur Ox : dp’%mé = m, la
résultante des forces extérieures étant uniquement les forces de pression
a gauche Fy oouche » gauche = P(X)SUy et a droite F, groire = —P(x + dx)SU, ol P représente la pression.
o(uw) o(uv
Sdx (gt ) (gx ) xS = (P(x) — P(x + dx)) ST

a(uv)+6(uv2) _ 9P

at ox  ox
Soit dans le cadre de I’approximation acoustique
ov(x,t) N oW (x, )] dp(x,t)
Ho| ™ 5¢ ax | ox
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On retrouve I’équation d’Euler avec un terme supplémentaire, qui est négligeable devant le

. .. Co L. . , P ov(x,t
premier, ce qui justifie qu’on peut écrire simplement 1’accélération sous la forme % et on
av(x,t ap(x,t
retrouve I’équation d’Euler précédente : ;t )= _ pa(x )

b. Equation de conservation de la masse :

oy ou
div(uv) + Frie 0

En utilisant 1’approximation acoustique :

hodiv@B(M, 1)) + 10 =0 (2)

at

Pour une onde se propageant selon Ox :

dv(xt)  opu(xt) _ ’

c. Evolution isentropique — équation thermodvynamique

On définit le coefficient de compressibilité isentropique ¥ (prononcer Ki)

_1<6u)
XS_IJ aPS

_ 1 (u(M,t)— uo> _ 1wt
Mo + U(M’ t) P(M, t) - P° s Mo p(M, t)o

Soit

Xs

M, )= po. xs- pM, t) (3)

Pour une onde se propageant selon Ox :

wx, £)= po- Xs- p(x, )  (3)




4. Equation de propagation de la surpression

11 faut faire intervenir une dérivée seconde de p(M,t) par rapport au temps :

(3) (équation thermodynamique linéarisée) (M, t)=py. xs- p(M, t)
— (2) (équation de conservation de la masse linéarisée)
dyg.- xs-p(M, t
wodiv(B(M, £)) + -0 Xsalz( ) _o
gy dp(M,t)
diviv(M,t)) + Xsa—t =0
On dérive par rapport au temps :
adiv(B(M, t)) 82 p(M, t)
tXs— (37 =0
dat Jat
On applique le critére de Schwartz :
V(M. t) 82 p(M, t)
div|—— ——=0
w( at >+XS atZ

On utilise (1) (équation d’Euler linéarisée)

- 2
diU(—grad(p(M,t))>+Xsa p(M,¢) _

(=)

at?

(]
%> p(M, t) 1
at? HoXs
Par définition du laplacien scalaire div ( grad(p(M, t)) ) = Ap(M, t)

div(grad(p(M, 1)) )

*p(M,t) _
a2

Ap(M,t)

oXS

Equation de D’ Alembert :

*p(M.,t)
at2

= ¢ Ap(M, t) avec ¢ = \/ﬁ

Il est facile de montrer que p vérifie la méme équation, car proportionnel a p moins facile de
montrer que ¥ la vérifie, mais ¢’est aussi le cas ; nous I’admettrons.

Remarque a 1 dimension :

On cherche une équation de propagation de la surpression p selon la direction x a la célérité c :
d%p d%p
2

— =c*.
at? dx?

Pour avoir la dérivée seconde temporelle de p : remplacer p de (2°) par (3”) puis dériver par rapport

au temps.

Pour avoir la dérivée seconde spatiale de p : dériver (1’) par rapport a x.
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5. Vitesse du son dans les différents milieux

i vitesse du son P 22212 Brzzz.
o (m.sY) % i
gaz
dioxygene 317
air 331
diazote 339
dihydrogeéne 1270
liquides
eau 1500
mercure 1450
solides
plomb 1230
cuivre 3750
fer 5130
granit 6000 M

Doc. 5. Vitesse du son dans gquelgue

#a = Pour un gaz parfait de masse molaire M, de coefficient y a la température
milieux matériels.

T, a partir de la relation des gaz parfaits on obtient :

_ PoM
1(op . g 1eis . .
Xs =7 (5) est le coefficient de compressibilité isentropique.
N

Une transformation isentropique d’un gaz parfait est régie par la loi de Laplace : PV = const =
P(m/p)Y = P.p7" car on travaille avec un systéme fermé de masse constante.

Dérivée logarithmique : soit f(x,y) = A.x%yP ou A, a, B sont des constantes
In(f) = InA + o.Inx + B.Iny

Différentions cette fonction sachant que d(Inu) = du /u on en déduit que la dérivée logarithmique de
la fonction f(x,z) :

Appliquons la dérivation logarithmique & Pp™ = constante :
af _dp dp  dconstante

=1l y—=————=

f P p constante

. dp p . . . 1(0dp p 1 s A
d'ou — = — valable pour une transformation isentropique, donc y¢ = — (—) =—=——d0u
P yP p pique, Xs = p\ar); = oyp (Posp)y

dans le cadre de I’approximation acoustique :

Xs = 1/yP,

Sachant que ¢ = on en déduit que pour un gaz parfait :

1
VPoXs



YRT,
M

Cc =

Remarque : attention dans les AN a mettre M en unités SI : kg.mol!
AN : Aira T =300 K, Mair= 0,029 kg.mol ™!, y=1,4 : ¢ =347 m.s”\.
b. Liquides :
10 -1 3 3 -1
Exemple : eau xg=5.10 Pa ;po=10 kgm d'ouc=1400m.s .

¢. Mesure de la célérité du son :
La mesure peut se faire grace a une impulsion par mesure de temps de vol (figure).

Au labo, on la mesure dans ’air grace a un couple émetteur récepteur d’ultrasons.

On considére un émetteur E placé en x=0 et reli¢ a un générateur basse fréquence émettant un
signal de fréquence f connue ; le signal émis s’écrit :
e(t) = E. cos(mt).
Le signal regu par un récepteur placé a 1’abcisse x s’écrit :
s(t) = S. cos(wt-kx).

On observe les signaux e(t) et s(t ) a I’oscilloscope ; ils sont en phase si :
kx=2n.mavecn € Z
S x=nl
On mesure donc la distance entre deux (ou plus) coincidences de phase successives pour en déduire
A, puis c = Af.

= E } Frpérience sir la frans-

— o = — — mitssion du son dans Ueau
= — (1527 ). Les deur hatearr

: sont anerés le long des deir

- — | —— rives dw Léman. Quand le

‘ ! mrtean frappe ta cloche

oz i L : — (geiche ), wne Luiére est

*'ﬁ b = : allimée sur Uembareation.

e — — De Uantre cété du lac,

des olservateurs (droite)

il

i mesurent le temps deonlé
I 3 :
1 entre le signal luininenr
1o il o
= 3 —== et I'andition du son.
. — =
— - o
— — 1




II. Aspect énergétique

Une onde sonore transporte de 1’énergie acoustique.

1. Vecteur densité surfacique de puissance :

Soit une onde sonore progressive qui se propage dans le sens x croisant.
La pression a gauche de la particule fluide est P, + p ou p est la surpression générée par
I’onde sonore, la pression a droite de la particule fluide est Po.

F; = —P,Su;
L]

Onde sonore

J E:(Po-l'p)su_x)

Particule de fluide de section .
S de vitesse ¥ au passage de
I’onde sonore

v

La résultante des actions sur la particule fluide est
F,+F4= (P, +p)Su; — P,Su; = pSuy

et la puissance 2 = pSu,,. v = I1. Su,, ou ¥ est la vitesse que la particule fluide acquiert au passage
de I’onde sonore.

Définition : le vecteur densité surfacique de puissance est :
II=p.79 en W.m?

. . = ‘
La puissance acoustique est le flux de Il a travers une surface S :

p:]fﬁ.df

2. Densité volumique d'énergie sonore :

. . " . . . e dE .
E = ¢énergie sonore la densité volumique d’énergie sonore est définie par e = -, ¢n Jm?,

Définition : énergie cinétique volumique (J.m™) :

ec :E.povz

Définition : énergie potentielle volumique (J.m™):
ey = E-XS pZ

L'énergie volumique totale est donc : e = ec + ep

s : e 1 : :
: ; .
Propriétés : pour une onde progressive ec = ep ; e vérifie I'équation de propagation



3. Intensité acoustique :

Définition : ’intensité acoustique en W.m™ est la moyenne temporelle de la norme du vecteur
densité de puissance sonore :

I'= (7))

Définition : le niveau sonore ou intensité sonore en dB est :
lig = N = 10log (1/1,) avec I, = 1072 Wm™.

SEVIL DE DOULEUR

SEUIL OE DAMGER
- SEUIL DE RISQUE

SEUIL D'AUDIBILITE

Echelle du brust

Conversation normale a 1 m 60 dB
Intensité sonore
\ dB intensité amplitude
sonore d:‘:;i
on
1301 I(W.m-? s“"p(Pa)
Seuil d’audition : IaB
maximum seuil -1 10-5
d’audition . " 0
seuil d’audition s
minimum intensité 10-4 0.3
- Hf forte
125 1000 2000 16 000 senil : s 80
Doc. 7a. Seuils d’audition en fonction de de douleur
la fréquence. 120

Doc. 7b. L'oreille est sensible a de trés
faibles variations de pression.

10



II1. Une solution de I’équation de D’ Alembert : les Ondes sonores
Planes Progressives Harmoniques (OPPH)

1. Notion de surface d’onde :

p(x,t) est une Onde Progressive Harmonique solution de 1’équation de d’ Alembert
p(x,t) = po.cos(ot - kx + @) se propage dans la direction Ox dans le sens x croissant.

k = ku, est le vecteur d’onde.

Sit = const, les points tels que p(x,t) = const ont pour équation x = const.

I s’agit de I’équation d’un plan perpendiculaire a I’axe Ox, direction de propagation.

D’ou le qualificatif d’onde PLANE. Ce plan s’appelle le plan d’onde. Tous les points d’un
méme plan d’onde vibrent en phase.

oo
By

—

plans d’onde

p(x,t) = po.cos(mt - kx + @) est appelée OPPH : Onde Plane Progressive Harmonique se
propageant dans le sens x croissant.

Remarque : I’onde progressive harmonique sur la corde est aussi une onde plane.
Par définition, on appelle surface d’onde I’ensemble des points qui, a un instant donné

vibrent en phase. On montre que la surface d’onde est toujours perpendiculaire a la direction
de propagation de 1’onde.

2. Ecriture généralisée du champ de pression :

Pour une OPPH se propageant dans le sens x croissant k= ku, ouu, estladirection de
propagation de 1’onde, on peut écrire que kx = ki, . xi,= k. OM = k.7 en posant
OM =7 = xu, et donc p(x,t) ) = p(7,t) = po.cos(wt - k.7 + @)

Soit une OPPH se propageant dans une direction U quelconque, telle que =

x| =

On peut alors écrire, dans la base cartésienne k = ko, +ku, +ku,
et OM =7 =xU; +y.u, +2.U;
donc k.7 = k. x + k. y + Ky 2

et p(A,t) = po.cos(ot - k. 7 + @) = po.cos(ot - (ky. x + ky.y +k;.z) +¢)=p(xy,zt)

11



En complexe OPPH : p(7.t) = po.exp(j(ot - k. 7)) avec po = Po.’®
p(7,t) = po.exp(j(0t - ky. x — ky.y — k,.2))

3. Dérivation formelle pour une OPPH UNIOUEMENT

Soit p(7,t) = po.exp(j(ot - ky. x — ky.y — k,.2)) = p,. e (0t ROM) — B el (@t=kex—kyy=k;z)

dp ) \
P) a. .
x aax Jkxp I,:x

gradp = £ =13y g:ﬁg: —Jjkyp | = —j| ky HZ_]'EB
ap ] _jkzp kz
6_; 0z
Opérateur NABLA

On retient que pour une OPPH UNIQUEMENT exprimée sous la forme
D(F,0) = P, €/ (M)

I’opérateur NABLA Vot jk.

On veillera a respecter I’homogénéité vectorielle et dimensionnelle.

Opérateur LAPLACIEN en complexe :
?’p  d*p  %p . N2 .
T <a— tart ) = (ko™ + (k) p + (Hk)?p) =
(—D2(ke® + k)2 + k,2)p = (—jk)%p
On retient que pour une OPPH UNIQUEMENT exprimée sous la forme

D(F.0) = po. e/ (M)

’opérateur LAPLACIEN A «<>&jk)?

Application 1 : Déterminer la relation de dispersion dans le cas d’une onde a 3 dimensions :
L’équation d’onde s’écrit en complexe :

=0

Ap——
2 ¢ ot?

D’ot si p(M,t) = p,. e/ (“t=K-0M) st yune OPPH

: a%p .
Ap=(jk’p et -5 = (jw)’p

D’ou en remplagant dans I’équation de D’ Alembert

12



2
(kP — % (jw)?p = 0 soit (—kz J;’_z}g: 0

w2

On retrouve la relation de dispersion k? = =
Application 2 :
Déterminer I’expression du champ des vitesses de 1’onde, a partir de 1’équation d’Euler,
en supposant que p(M,t) est une OPPH.

4. Relation entre p et v : impédance acoustique.

Définition : l'impédance acoustique d’une onde plane est :
Z=pl/v

Considérons une onde progressive plane monochromatique dont la surpression s’écrit :
p(x,t) = po.sin(ot — k.x + ).

ov
L’équation d’Euler linéarisée s’écrit ici P E = —& =—k.po. cos(ot — k.x+ @).
;g _ k.p() . . _ Po . B
On en déduit v(x,t) = —.sin(ot — k.x+ @) = ——.sin(ot — k.x + @).
Po® Poc

Rappel : la constante d’intégration est nulle, car par hypothése <v(x,t)> =0

On a donc pour une onde progressive suivant les x croissants :
Z+ = poc

Pour une onde progressive suivant les x décroissants, on a de méme :
Z.-=-poc

L’impédance acoustique d’un milieu est ’'impédance d’une onde progressive se déplacant selon
les x croissants (c’est une grandeur positive) :

7= poc = Po — Po
VPoXS Xs

[Z] =kg.m>m.s! =kgm?s!

Ordres de grandeur : (en kg.m?2.s™!)
Zair = 1¥340 =340 ; Zeau=10° *1 500 = 1,5.10°; Zacier = 7 800* 5 000 = 3,9.107
Zgaz < Zliquide < Zsolide

5. Expressions des champs complexes de pression et de vitesse pour une
OPPH unidirectionnelle

6. Expression de ’intensité sonore I pour une OPPH
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Attention ’intensité sonore [ = (||7(x, t)||) = (||p(x, tv(x, t)”) est une grandeur
« quadratique » (produit de deux grandeurs linéaires) on NE peut PAS utiliser les
expressions complexes de p(x,t) et v(x, t) pour déterminer 7 (x, t).

Pour déterminer 7 (x, t), il FAUT utiliser les formes réelles de p(x,t) et v(x, t).

Montrer que
I PoVo

"2
ou po est I’amplitude de I’onde de surpression et v, est ’amplitude de I’onde de vitesse

pour une OPPH se propageant dans le sens x croissant.

Validation de ’approximation acoustique

Soit un haut-parleur de 100 W qui rayonne sur une surface de 10 m?.
Déterminer la valeur de 1’intensité sonore, puis celle de I’intensité sonore en dB.

Calculer I’amplitude de 1’onde de surpression sonore po, de celle de la vitesse v, de celle
de la « surmasse volumique » Lo, de celle de déplacement de la particule fluide, &o.

A quelles grandeurs doit-on comparer les valeurs numériques de po, Vo, o €t o pour
justifier I’approximation acoustique ?
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IV. Ondes Sphériques Progressives Harmoniques (OSPH)

Le mod¢le de I’onde plane ne permet pas d’interpréter la localisation de la puissance sonore, d’ou la
nécessité d’introduire le modéele de 1’onde sphérique.

Sens de propagation
Onde sphénave 1. e modele de ’onde sphérique

; La « sphére pulsante » au centre O de la sphere

N modélise un haut-parleur qui émet une onde sonore
WADIY de maniére isotrope dans toutes les directions de
it I’espace.

:- 5;75.3ére puissnte\
—yew |

Soit le point P et p(P,t) la surpression acoustique en
e ) ce point.

p(P,t) =p(O, t - 1) ou 7 est la durée mise par I’onde
b 7 . . oP r
Liat sonore pour parcourir la distance OP, T = — =
= /v " ou c est la celérite de I’onde, donc

p(P,t) = p(r,t) = p(t — r/c).

La surface d’onde est définie par p(t — r/c) = const a t fixé, donc r = const est I’équation de la sphere
de rayon r passant par le point P.

Les surfaces d’onde sont des spheres, 1’onde est dite sphérique.

Le vecteur d’onde k est perpendiculaire a la surface d’onde donc k= ku, . Le vecteur d’onde est
radial.

Comme I’onde sonore est longitudinale ¥ est colinéaire a k donc ¥ = v(r, t).u,

2. Puissance moyenne rayonnee :

Le milieu étant suppos€ non-absorbant, la puissance moyenne fluant a travers une sphére de rayon r
centrée sur S est :

P= (ff p(r,¢).5(r, £).dS) = (p(r, t).v(r ). 4.1.7% = . 4.7.72
Sp eére

P

4,72

L’intensité acoustique [ = décroit alors en 1/,

On peut en déduire que I’amplitude des champs de pression et de
vitesse décroit en 1/r

3. Forme de la surpression :

On montre alors qu’une solution harmonique s’écrit :

A
p(r,t) = —cos (wt —k.r+ @)
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L’amplitude de I’onde de surpression est inversement proportionnelle a la distance.

p(r,t) est une onde de surpression, solution de I’équation de D’ Alembert a 3 dimensions :

d%p(r, t)
T = C2 Ap('l‘, t)
En coordonnées sphériques, pour p = p(r,t), le laplacien scalaire s’écrit :
Ao £) = 1 9%(r?p)
p(rt) = r2  or?

On peut montrer que p(r,t) = é f(t — r/c) est solution

4. Forme de la vitesse :

L’équation d’Euler linéarisée s’écrit :

v dp(rt) _,
Poge = o M
On calcule :

17=( s—sin(wt — k.7 + @) +
por?w porc

cos (wt — k.r + (p)>u_r>

Le second terme est prépondérant des que :
r>>A

On est alors dans I’approximation de champ lointain.

=
5. Onde localement plane : { )

-,!.';:;I.'-rIII;I.I'.' \".. *
A grande distance de la source, I’onde sphérique peut-étre . A e
confondue avec son plan tangent, on dit que I’onde est < \ ¥t
localement plane, et si on s’¢loigne peu de ce plan tangent, — —ph g
on peut supposer que 1’amplitude de I’onde reste constante. seurce / : P:::flm

& *

enitre sphénque plan Egent
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V. Réflexion et transmission d’une onde sonore a l’'interface de
deux fluides

1. Position du probléeme

On considére une onde sonore plane progressive harmonique qui se propage unidirectionnellement
dans I’air dans le sens x croissant.

Exprimer 1’onde de surpression et de vitesse en fonction des amplitudes, x et t.
Rappeler la valeur numérique ¢ de la célérité de cette onde, ainsi que I’impédance acoustique Z1 de
I’air.

En x = 0, ’onde sonore change de milieu qui devient de I’eau.
Rappeler la valeur numérique c» de la célérité de I’onde sonore dans 1’eau, ainsi que I’impédance
acoustique Z> de I’eau. Soit k» la valeur du vecteur d’onde dans I’eau. A-t-on ki = ko ?

A D'interface des milieux air-eau, on observe I’apparition d’une onde réfléchie et d’une onde
transmise. A quel phénomeéne ceci est-il analogue ?

Exprimer les champs de pression pi(x,t), p«(X,t), pi(X,t) et vitesses vi(X,t), vi(X,t), vi(x,t) complexes
des ondes incidentes, réfléchies et transmises respectivement.
On note Po (grandeur supposée réelle) I’amplitude de I’onde de surpression incidente

Por I’amplitude complexe de 1’onde de surpression réfléchie

pot I’amplitude complexe de I’onde de surpression transmise
Exprimer les amplitudes complexes des vitesses incidentes, réfléchie et transmise en fonctions des
amplitudes complexes des pressions respectives et de I’impédance acoustique du milieu.

But du probléme : déterminer les amplitudes complexes por et pot
en fonction des données : po, Z1 et Z>

La résolution de ce probléme est faite a I’aide des questions ci-dessous.

2. Conditions a Pinterface x =0 :

La pression est une fonction continue.
La composante normale de la vitesse est continue.

Dans I’air, milieu 1, coexistent onde incidente et onde réfléchie. Ecrire le champ des pressions et
des vitesses en tout point de 1’air.

Dans I’eau, milieu 2 il n’y a qu’une onde transmise.

En appliquant les deux conditions a la limite, montrer que por €t pot sont solutions du systéme :

Pyt Do =Day
Py _Por_ Pu
Zl Zl ZZ

Résoudre ce systéme, pour exprimer por €t pot €n fonction de po, Z1 et Zo.
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3. Expressions des coefficients de réflexion et de transmission en amplitude

<

Définition des coefficients de transmission en pression : 7 = ~ ;envitesse 7 = ==
- p v

<

S

- v
Définition des coefficients de réflexion en pression: p = Bor ; en vitesse p = —
- pO — v()
27, 27, Z -7, Z, -7,
Montrerque 7, =——— 37, = 55 3 P, =~ 0, =———
— 4 +Z, — Z+Z, — Z+Z, — Z+Z,

En déduire les expressions des surpressions et vitesse des ondes incidentes, réfléchies et transmises

en fonction de x, t, po, des coefficients de réflexion ou de transmission et de I’impédance
acoustique.

4. Etude de cas particuliers :

a) Milieux adaptés Zi = Z> : montrer qu’il n’y a pas d’onde réfléchie.

b) Z:<<ZietZ;>>71:montrer qu’il n’y a pas d’onde transmise et qu’il y a
formation d’onde stationnaire dans le milieu 1.

On vérifiera que les noeuds de vitesse sont des ventres de pression et réciproquement.
A Py

X

T Sgh NNl a

5. Coefficients de réflexion et de transmission en puissance

I; est le niveau sonore de I’onde incidente ; I; est le niveau sonore de 1’onde réfléchie
I; est le niveau sonore de 1’onde transmise

I/
Définition du coefficient de transmission en puissance : 7 = —*

i

1
Définition du coefficient de réflexion en puissance : R=-—"

i

Z —7Z
Montrer que T = —222_ ot R=( ———

2
(z1+Z3)? Zl +Z2j et que R+T=1

En déduire que

Ii = It + Ir relation de conservation de la puissance sonore a I’interface entre deux fluides
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