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6. Physique des ondes 
6.1. Phénomènes de propagation non dispersifs : équation de d'Alembert 

6.1.2. Ondes sonores dans les fluides CdE 
Approximation acoustique.  Classer les ondes sonores par domaines 

fréquentiels. 
Justifier les hypothèses de l’approximation 
acoustique par des ordres de grandeur.  
Écrire les équations locales linéarisées : 
conservation de la masse, équation 
thermodynamique, équation de la dynamique. 

 
 
 
 
CdE2 : 23.7 

Équation de d’Alembert pour la 
surpression. 

Etablir l’équation de propagation de la surpression 
formulée avec l’opérateur laplacien.  

CdE2 : 23.8 

Célérité. Exprimer la célérité en fonction de la température 
pour un gaz parfait. 
Citer les ordres de grandeur de la célérité pour l’air 
et pour l’eau. 

CdE2 : 23.3 

Densité volumique d’énergie 
sonore, vecteur densité de 
courant énergétique. 
 
Intensité acoustique, niveau 
sonore. 
 

Utiliser les expressions admises du vecteur densité 
de courant énergétique et de la densité volumique 
d’énergie associés à la propagation de l’onde.  
Définir l’intensité sonore et le niveau sonore.  
Citer quelques ordres de grandeur de niveaux 
d’intensité sonore. 

 
 
 
 
CdE2 : 23.1 ; 
23.2 

Ondes planes progressives 
harmoniques. 
 
 
 
Impédance acoustique. 
 

Décrire le caractère longitudinal de l'onde sonore. 
Discuter la validité du modèle de l’onde plane en 
relation avec le phénomène de diffraction. 
Utiliser le principe de superposition des ondes 
planes progressives harmoniques. 
Établir et utiliser l’impédance acoustique définie 
comme le rapport de la surpression sur le débit 
volumique ou comme le rapport de la surpression 
sur la vitesse. 

 
 
 
 
 
CdE2 : 23.4 ; 
23.5 

Onde sonore sphérique 
harmonique divergente. 

Commenter l'expression de la surpression générée 
par une sphère pulsante : atténuation géométrique, 
structure locale. 

 

6.3. Interfaces entre deux milieux  
6. 3.1. Cas des ondes sonores   
Réflexion, transmission d’une 
onde sonore sur une interface 
plane entre deux fluides : 
coefficients de réflexion et de 
transmission en amplitude des 
vitesses, des surpressions et des 
puissances sonores. 

Expliciter des conditions aux limites à une 
interface. 
Établir les expressions des coefficients de 
transmission et de réflexion en amplitude de 
surpression, en amplitude de vitesse ou en 
puissance dans le cas d’une onde plane 
progressive sous incidence normale. 

Relier l’adaptation des impédances au transfert 
maximum de puissance. 

CdE2 : 23.6 ; 
23.11 ; 
23.12 ; 23.13 
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Ondes : chapitre 2 Ondes sonores dans les fluides 

I. Equations de propagation 

 
1. Caractéristiques des ondes sonores 

L’onde sonore nécessite un milieu matériel pour se propager. 

C’est une onde longitudinale de compression :  

Vidéo : animation Son 01 

 

Modèle de l’air au repos 

 

 

 

Modèle de l’air lors du passage d’une impulsion sonore 

 

 

Modélisation d’une onde sonore sinusoïdale par des zones de compressions et détentes successives 

L’ordre de grandeur de la célérité du son dans l’air à 25°C est de 340 m.s-1. 

Les paramètres pertinents permettant de modéliser l’onde sonore sont les paramètres du milieu qui 
varient lors du passage de l’onde : la pression, la masse volumique, le déplacement donc la vitesse. 
  

Zone où l’air est comprimé 
Zone où l’air est détendu 
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2. Approximation acoustique 

Une onde sonore est une perturbation mécanique réversible du milieu. 

Au passage de l’onde, les paramètres d’état (pression P, vitesse 𝑣⃗, masse volumique ) ne 
subissent que de faibles variations. 

On considère un fluide dont l’état d’équilibre correspond au point M tel que 𝑂𝑀ሬሬሬሬሬሬ⃗ = 𝑟 à l’instant t à : 
P(𝑀, 𝑡) = P°, T (𝑀, 𝑡) = T0, (𝑀, 𝑡)  = µ0 et 𝑣⃗(M, 𝑡)  = 0ሬ⃗ . 

 
Le passage d’une onde acoustique provoque des variations de ces grandeurs : 

P(𝑀, 𝑡) = P° + p(𝑀, 𝑡) ; T (𝑀, 𝑡) = T0 + θ(𝑀, 𝑡) ; µ(𝑀, 𝑡)  = µ0 + μ1(𝑀, 𝑡) et 𝑣⃗(𝑀, 𝑡) ≠ 0ሬ⃗ . 
 
On fait les hypothèses suivantes : 

 On néglige le poids devant les forces de pression ; 
 L'écoulement est supposé parfait et adiabatique ; il sera donc isentropique. 
 le déplacement  d'une tranche de fluide par rapport à l'équilibre est petit, ainsi que la vitesse 

𝑣⃗ =
డకሬ⃗

డ௧
 ; 

 les variations sont petites : P = P° + p avec p << P° ; p est la surpression acoustique ; 
µ = µ0 + 1 avec 1 << µ0 ; v << c (célérité des ondes acoustiques). 

 On se place dans l’approximation acoustique :  
 *  v, p et  1   sont des perturbations par rapport à l'état d'équilibre ; on les assimilera, 
ainsi que leurs dérivées, à des infiniment petits dont on ne conservera dans les équations que 
le premier ordre ; 
  * leurs valeurs moyennes temporelles sont nulles. 

 
Ordres de grandeur : on a couramment p/ P° =  μ1/ µ0 = 10-3 . 

 

3. Equations locales dans l’approximation acoustique 

 a. Pfd appliqué à une particule de fluide – équation de la dynamique  

Le système est une particule de fluide de masse dm = d qui se trouve au point M tel 
que 𝑂𝑀ሬሬሬሬሬሬ⃗ = 𝑟 à l’instant t qui n’est soumise qu’à la résultante des forces de pressions 

𝑑𝐹⃗ = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ 𝑃. 𝑑𝜏. 

𝑑𝑚𝑎⃗ = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ 𝑃. 𝑑𝜏 

dቀ
డ௩ሬ⃗

డ௧
+ ൫𝑣⃗. 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ ൯𝑣⃗ቁ = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ 𝑃. 𝑑𝜏

(µ0 + μ1(𝑀, 𝑡))ቀ
డ௩ሬ⃗

డ௧
+ ൫𝑣⃗. 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ ൯𝑣⃗ቁ = −𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ (P° + p(𝑀, 𝑡)) 

Or dans le cadre de l’approximation acoustique  

µ0 >> μ1(𝑀, 𝑡)  

𝑣⃗ est un infiniment petit d’ordre 1, 
డ௩ሬ⃗

డ௧
 l’est également, mais ൫𝑣⃗. 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ ൯𝑣⃗~

௩మ

௅
 est un infiniment 

petit d’ordre 2 que l’on peut négliger devant l’ordre 1 

 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ (P° + p(𝑀, 𝑡)) = 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ (P௢) + 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ (p(𝑀, 𝑡)) =  0ሬ⃗ + 𝑔𝑟𝑎𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ (p(𝑀, 𝑡)) 

On en déduit l’expression du pfd (appelé aussi équation d’Euler) appliqué à une particule de fluide 
dans le cadre de l’approximation acoustique : 
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µ0 
𝝏𝒗ሬሬ⃗ (𝑴,𝒕)

𝝏𝒕
= −𝒈𝒓𝒂𝒅ሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝐩(𝑴, 𝒕)) (1) 

Dans le cas d’une onde longitudinale se propageant selon Ox : 𝑂𝑀ሬሬሬሬሬሬ⃗ = 𝑟 = 𝑥𝑢௫ሬሬሬሬ⃗  
 𝑣⃗(𝑀, 𝑡) =   𝑣⃗(𝑥, 𝑡) =  v(x, t)𝑢௫ሬሬሬሬ⃗   ; P(𝑀, 𝑡) = P(𝑥, 𝑡) = P° +p(x, 𝑡) ; µ(𝑀, 𝑡) = µ(𝑥, 𝑡) = µ0 + μ1(𝑥, 𝑡)  

µ0 
𝝏𝒗(𝒙,𝒕)

𝝏𝒕
= −

𝝏𝒑(𝒙,𝒕)

𝝏𝒙
 (1’) 

La relation obtenue est la projection de la relation vectorielle sur l’axe Ox, c’est donc une relation 
scalaire. 

 

Remarque : On peut aussi faire un bilan de quantité de mouvement sur l’air en écoulement au 
passage de l’onde. 
Considérons une propagation unidirectionnelle selon l’axe x. Le système ouvert est compris entre x 
et x +dx 

 

𝑝௙௘௥௠é ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡 + 𝑑𝑡) − 𝑝௙௘௥௠é ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡) = 𝑝௢௨௩௘௥௧ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡 + 𝑑𝑡) + 𝛿𝑝௦ሬሬሬ⃗ − (𝑝௢௨௩௘௥௧ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡) + 𝛿𝑝௘ሬሬሬሬ⃗ )=  

𝑚௢௨௩௘௥௧(𝑡 + 𝑑𝑡)𝑣௢௨௩௘௥௧ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡 + 𝑑𝑡) − 𝑚௢௨௩௘௥௧(𝑡)𝑣௢௨௩௘௥௧ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡) + 𝛿𝑚௦𝑣௦ሬሬሬ⃗ − 𝛿𝑚௘𝑣௘ሬሬሬ⃗  = 
𝑆𝑑𝑥൫µ(𝑡 + 𝑑𝑡)𝑣௢௨௩௘௥௧ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡 + 𝑑𝑡) − µ(𝑡)𝑣௢௨௩௘௥௧ ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ (𝑡)൯ 

+ µ(x+dx, t+dt)v(x+dx, t+dt)S𝑑𝑡𝑣⃗(𝑥 + 𝑑𝑥,  𝑡 + 𝑑𝑡) - µ(x,t)v(x,t)S𝑑𝑡𝑣⃗(𝑥, 𝑡) = 

𝑆𝑑𝑥
𝜕(µ𝑣 ሬሬሬ⃗ )

𝜕𝑡
𝑑𝑡 +

𝜕(µ𝑣𝑣 ሬሬሬ⃗ )

𝜕𝑥
𝑑𝑥𝑆𝑑𝑡 

 

En appliquant le principe fondamental de la dynamique projeté sur Ox : 
ௗ௣೑೐ೝ೘é ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗

ௗ௧
=  𝐹௘௫௧

ሬሬሬሬሬሬሬ⃗ , la 

résultante des forces extérieures étant uniquement les forces de pression  
à gauche 𝐹௣ ௚௔௨௖௛௘

ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ = 𝑃(𝑥)𝑆𝑢௫ሬሬሬሬ⃗  et à droite 𝐹௣ ௗ௥௢ప௧௘
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  = −𝑃(𝑥 + 𝑑𝑥)𝑆𝑢௫ሬሬሬሬ⃗  où P représente la pression. 

𝑆𝑑𝑥
𝜕(µ𝑣 ሬሬሬ⃗ )

𝜕𝑡
+

𝜕(µ𝑣𝑣 ሬሬሬ⃗ )

𝜕𝑥
𝑑𝑥𝑆 =  (𝑃(𝑥) − 𝑃(𝑥 + 𝑑𝑥))𝑆𝑢௫ሬሬሬሬ⃗  

𝜕(µ𝑣)

𝜕𝑡
+

𝜕(µ𝑣ଶ)

𝜕𝑥
=  −

𝜕𝑃

𝜕𝑥
 

 
Soit dans le cadre de l’approximation acoustique 

µ௢ ቈ
𝜕𝑣(𝑥, 𝑡)

𝜕𝑡
+

𝜕(𝑣ଶ(𝑥, 𝑡)

𝜕𝑥
቉ =  −

𝜕𝑝(𝑥, 𝑡)

𝜕𝑥
 

S 

Fermé à t 
Système qui 
entre dans 
l’ouvert pendant 
dt de masse  
me = Dme.dt = 
µ(x,t)v(x,t)Sdt 

x x + dx 

Fermé à t+dt 

𝑣⃗(𝑥, 𝑡) 

Système qui sort de l’ouvert 
pendant dt de masse  
ms = Dms.dt = 
µ(x+dx, t+dt)v(x+dx, t+dt)Sdt 
 

Ouvert de masse µ(x,t)Sdx 

𝐹௣ ௚௔௨௖௛௘
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  

𝐹௣ ௗ௥௢ప௧௘
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  

𝑣⃗(𝑥 + 𝑑𝑥,  𝑡 + 𝑑𝑡) 
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On retrouve l’équation d’Euler avec un terme supplémentaire, qui est négligeable devant le 

premier, ce qui justifie qu’on peut écrire simplement l’accélération sous la forme 
డ௩(௫,௧)

డ௧
 et on 

retrouve l’équation d’Euler précédente :     µ0 
𝝏𝒗(𝒙,𝒕)

𝝏𝒕
= −

𝝏𝒑(𝒙,𝒕)

𝝏𝒙
 

  

b. Equation de conservation de la masse : 

𝑑𝑖𝑣(µ𝑣⃗) +
𝜕µ

𝜕𝑡
= 0 

 
En utilisant l’approximation acoustique : 

µ𝟎𝒅𝒊𝒗(𝒗ሬሬ⃗ (𝑴, 𝒕)) +
𝝏𝝁𝟏(𝑴,𝒕)

𝝏𝒕
= 𝟎 (2) 

 
Pour une onde se propageant selon Ox : 

µ𝟎
𝝏𝒗(𝒙,𝒕)

𝝏𝒙
+

𝝏𝝁𝟏(𝒙,𝒕)

𝝏𝒕
= 𝟎   (2’) 

 

c. Evolution isentropique – équation thermodynamique 

On définit le coefficient de compressibilité isentropique s (prononcer Ki) 

𝜒ௌ =
1

µ
൬

𝜕µ

𝜕𝑃
൰

௦
 

 
Soit  

𝜒ௌ ≈
1

µ௢ + µ(𝑀, 𝑡)
ቆ

µ(𝑀, 𝑡) −  µ௢

𝑃(𝑀, 𝑡) − 𝑃°
ቇ

௦

=
1

µ௢

µଵ(𝑀, 𝑡)

𝑝(𝑀, 𝑡)°
 

 
 

µ1(𝑴, 𝒕)= µ𝟎. 𝝌𝑺. p(𝑴, 𝒕) (3) 

 
Pour une onde se propageant selon Ox : 

µ1(𝒙, 𝒕)= µ𝟎. 𝝌𝑺. p(x, 𝒕) (3’) 
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4. Equation de propagation de la surpression 

Il faut faire intervenir une dérivée seconde de p(M,t) par rapport au temps : 

(3) (équation thermodynamique linéarisée)   µ1(𝑴, 𝒕)= µ𝟎. 𝝌𝑺. p(𝑴, 𝒕)  

 (2) (équation de conservation de la masse linéarisée) 

µ𝟎𝒅𝒊𝒗(𝒗ሬሬ⃗ (𝑴, 𝒕)) +
𝝏µ𝟎. 𝝌𝑺. 𝐩(𝑴, 𝒕) 

𝝏𝒕
= 𝟎 

𝒅𝒊𝒗(𝒗ሬሬ⃗ (𝑴, 𝒕)) + 𝝌𝑺

𝝏 𝐩(𝑴, 𝒕) 

𝝏𝒕
= 𝟎 

On dérive par rapport au temps : 

𝝏𝒅𝒊𝒗(𝒗ሬሬ⃗ (𝑴, 𝒕)) 

𝝏𝒕
+ 𝝌𝑺

𝝏𝟐 𝐩(𝑴, 𝒕) 

𝝏𝒕𝟐
= 𝟎 

On applique le critère de Schwartz :  

𝒅𝒊𝒗 ቆ
𝝏𝒗ሬሬ⃗ (𝑴, 𝒕) 

𝝏𝒕
ቇ + 𝝌𝑺

𝝏𝟐 𝐩(𝑴, 𝒕) 

𝝏𝒕𝟐
= 𝟎 

 

On utilise (1) (équation d’Euler linéarisée) 

𝒅𝒊𝒗 ቆ−
𝒈𝒓𝒂𝒅ሬሬሬሬሬሬሬሬሬ⃗ (𝐩(𝑴, 𝒕))

µ𝒐
 ቇ + 𝝌𝑺

𝝏𝟐 𝐩(𝑴, 𝒕) 

𝝏𝒕𝟐
= 𝟎 

𝝏𝟐 𝐩(𝑴, 𝒕) 

𝝏𝒕𝟐
=  

𝟏

µ𝒐𝝌𝑺
𝒅𝒊𝒗൫𝒈𝒓𝒂𝒅ሬሬሬሬሬሬሬሬሬ⃗ (𝐩(𝑴, 𝒕)) ൯ 

Par définition du laplacien scalaire  𝒅𝒊𝒗൫𝒈𝒓𝒂𝒅ሬሬሬሬሬሬሬሬሬ⃗ (𝐩(𝑴, 𝒕)) ൯ = ∆𝒑(𝑴, 𝒕) 

 
𝝏𝟐𝒑(𝑴, 𝒕)

𝝏𝒕𝟐
=

𝟏

µ
𝒐

𝝌
𝑺

 𝜟𝒑(𝑴, 𝒕) 

Equation de D’Alembert : 
𝝏𝟐𝒑(𝑴,𝒕)

𝝏𝒕𝟐
= 𝒄𝟐 𝜟𝒑(𝑴, 𝒕) 𝐚𝐯𝐞𝐜 𝒄 =

𝟏

ඥµ𝟎𝝌𝑺
 

 
Il est facile de montrer que µ1 vérifie la même équation, car proportionnel à p moins facile de 
montrer que 𝑣⃗ la vérifie, mais c’est aussi le cas ; nous l’admettrons. 

 
Remarque à 1 dimension : 

On cherche une équation de propagation de la surpression p selon la direction x à la célérité c : 
𝜕ଶ𝑝

𝜕𝑡ଶ
= 𝑐ଶ.

𝜕ଶ𝑝

𝜕𝑥ଶ
 

Pour avoir la dérivée seconde temporelle de p : remplacer µ de (2’) par (3’) puis dériver par rapport 
au temps. 
Pour avoir la dérivée seconde spatiale de p : dériver (1’) par rapport à x. 



7 
 

5. Vitesse du son dans les différents milieux 

 
 a.  Gaz :  
 
Pour un gaz parfait de masse molaire M, de coefficient  à la température 
T, à partir de la relation des gaz parfaits on obtient : 

𝜌଴ =
𝑃଴𝑀

𝑅𝑇଴
.  

 

𝜒ௌ =
ଵ

ఘ
ቀ

డఘ

డ௉
ቁ

௦
est le coefficient de compressibilité isentropique.  

Une transformation isentropique d’un gaz parfait est régie par la loi de Laplace : PVconst = 
P(m/P.car on travaille avec un système fermé de masse constante. 
 
Dérivée logarithmique :   soit f(x,y) = A.xyoù A,  sont des constantes 

ln(f) = lnA + lnx + lny 
 

Différentions cette fonction sachant que d(lnu) = du /u on en déduit que la dérivée logarithmique de 
la fonction f(x,z) : 

𝑑𝑓

𝑓
= 𝛼

𝑑𝑥

𝑥
+ 𝛽

𝑑𝑦

𝑦


 
Appliquons la dérivation logarithmique à P constante :  

𝑑𝑓

𝑓
= 1

𝑑𝑃

𝑃
− 𝛾

𝑑𝜌

𝜌
=

𝑑𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒
= 0

 

d'où 
ௗఘ

ௗ௉
=  

ఘ

ఊ௉
 valable pour une transformation isentropique, donc 𝜒ௌ =

ଵ

ఘ
ቀ

డఘ

డ௉
ቁ

௦
=

ఘ

ఘఊ௉
=

ଵ

൫௉೚శ೛൯ఊ
 d’où 

dans le cadre de l’approximation acoustique :  
 

𝜒ௌ = 1/𝛾𝑃଴ 
 
 

Sachant que 𝑐 =
ଵ

ඥఘబఞೄ
 on en déduit que pour un gaz parfait :  
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𝑐 = ඨ
𝛾𝑅𝑇଴

𝑀
 

 
Remarque : attention dans les AN à mettre M en unités SI : kg.mol-1 

 
AN : Air à T = 300 K, Mair= 0,029 kg.mol-1,  : c = 347 m.s-1. 
 
 b. Liquides :  
 

Exemple : eau  s = 5.10
-10

 Pa
-1

 ; 0 = 10
3
 kg.m

-3
 d'où c = 1400 m.s

-1
. 

 
 c. Mesure de la célérité du son :  
La mesure peut se faire grâce à une impulsion par mesure de temps de vol (figure). 
 
Au labo, on la mesure dans l’air grâce à un couple émetteur récepteur d’ultrasons. 
 
On considère un émetteur E placé en x=0 et relié à un générateur basse fréquence émettant un 
signal de fréquence f connue ; le signal émis s’écrit : 

e(t) = E. cos(ωt). 
Le signal reçu par un récepteur placé à l’abcisse x s’écrit :  

s(t) = S. cos(ωt-kx). 
 

On observe les signaux e(t) et s(t ) à l’oscilloscope ; ils sont en phase  si :  
k.x = 2n. π avec n ∈ Z 

⇔ 𝑥 = 𝑛. 𝜆 
On mesure donc la distance entre deux (ou plus) coincidences de phase successives pour en déduire 
λ, puis c = λ.f . 
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II. Aspect énergétique 
 
Une onde sonore transporte de l’énergie acoustique. 
 
1. Vecteur densité surfacique de puissance : 

 
Soit une onde sonore progressive qui se propage dans le sens x croisant. 
La pression à gauche de la particule fluide est Po + p où p est la surpression générée par 
l’onde sonore, la pression à droite de la particule fluide est Po. 
 
 
 
 
 
 
 
 
 
 
La résultante des actions sur la particule fluide est 

 
𝑭𝒈
ሬሬሬሬሬ⃗ + 𝑭𝒅

ሬሬሬሬ⃗ = (𝑷𝒐 + 𝒑)𝑺𝒖𝒙ሬሬሬሬ⃗

Définition : le vecteur densité surfacique de puissance est : 
Πሬሬ⃗ = 𝑝. 𝑣⃗  en W. mିଶ 

 
La puissance acoustique est le flux de Πሬሬ⃗  à travers une surface S  : 

𝑃 = ඵ Πሬሬ⃗ . 𝑑𝑆 

 
2. Densité volumique d'énergie sonore : 

 

E = énergie sonore la densité volumique d’énergie sonore est définie par e = 
ௗா

ௗఛ
 en J.m-3. 

 
Définition : énergie cinétique volumique (J.m-3) : 

𝑒௖ =
1

2
. 𝜌଴𝑣ଶ 

 
Définition : énergie potentielle volumique (J.m-3): 

𝑒௣ =
1

2
. 𝜒ௌ𝑝ଶ 

 
L'énergie volumique totale est donc : e = eC + eP 
 
Propriétés : pour une onde progressive eC = eP ; e vérifie l'équation de propagation. 
 
  

Onde sonore 

Particule de fluide de section 
S de vitesse 𝑣⃗ au passage de 
l’onde sonore 

𝐹௚
ሬሬሬ⃗ = (𝑃௢ + 𝑝)𝑆𝑢௫ሬሬሬሬ⃗  
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3. Intensité acoustique : 
 
Définition : l’intensité acoustique en W.m-2 est la moyenne temporelle de la norme du vecteur 
densité de puissance sonore : 

𝐼 =  〈‖𝜋ሬ⃗ ‖〉் 
 
Définition :  le niveau sonore ou intensité sonore en dB est :  

IdB = N = 10log ( I /I0 ) avec I0 = 10-12 W.m-2. 

 

Conversation normale à 1 m  60 dB  
 
Intensité sonore        

                               
 

 
IdB 

 
0 
 
80 
 
120 
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III. Une solution de l’équation de D’Alembert : les Ondes sonores 
Planes Progressives Harmoniques (OPPH) 

 
1. Notion de surface d’onde : 
 
p(x,t) est une Onde Progressive Harmonique solution de l’équation de d’Alembert 
p(x,t) = po.cos(t - kx + ) se propage dans la direction Ox dans le sens x croissant. 
 
𝑘ሬ⃗ = 𝑘𝑢௫ሬሬሬሬ⃗   est le vecteur d’onde. 
 
Si t  = const, les points tels que p(x,t) = const ont pour équation x = const.  
Il s’agit de l’équation d’un plan perpendiculaire à l’axe Ox, direction de propagation.  
D’où le qualificatif d’onde PLANE. Ce plan s’appelle le plan d’onde. Tous les points d’un 
même plan d’onde vibrent en phase. 

 
plans d’onde 

  
p(x,t) = po.cos(t - kx + ) est appelée OPPH : Onde Plane Progressive Harmonique se 
propageant dans le sens x croissant. 
 
Remarque : l’onde progressive harmonique sur la corde est aussi une onde plane. 
 
Par définition, on appelle surface d’onde l’ensemble des points qui, à un instant donné 
vibrent en phase. On montre que la surface d’onde est toujours perpendiculaire à la direction 
de propagation de l’onde. 

 

2. Ecriture généralisée du champ de pression : 
 
Pour une OPPH se propageant dans le sens x croissant 𝑘ሬ⃗ = 𝑘𝑢௫ሬሬሬሬ⃗   où 𝑢௫ሬሬሬሬ⃗   est la direction de 
propagation de l’onde, on peut écrire que kx = 𝑘𝑢௫ሬሬሬሬ⃗  . 𝑥𝑢௫ሬሬሬሬ⃗ = 𝑘ሬ⃗ . 𝑂𝑀ሬሬሬሬሬሬ⃗  = 𝑘ሬ⃗ . 𝑟 en posant 
 𝑂𝑀ሬሬሬሬሬሬ⃗ = 𝑟 =  𝑥𝑢௫ሬሬሬሬ⃗  et donc p(x,t) ) = p(𝑟,t) = po.cos(t - 𝑘ሬ⃗ . 𝑟  + ) 
 

Soit une OPPH se propageant dans une direction 𝑢ሬ⃗  quelconque, telle que 
k

k
u



  

On peut alors écrire, dans la base cartésienne zzyyxx ukukukk


   

et 𝑂𝑀ሬሬሬሬሬሬ⃗ = 𝑟 = 𝑥. 𝑢௫ሬሬሬሬ⃗ + 𝑦. 𝑢௬ሬሬሬሬ⃗ + 𝑧. 𝑢௭ሬሬሬሬ⃗  

donc 𝑘ሬ⃗ . 𝑟 = 𝑘௫. 𝑥 + 𝑘௬. 𝑦 + 𝑘௭ . 𝑧 
 

et p(𝑟,t) = po.cos(t - 𝑘ሬ⃗ . 𝑟  + ) = po.cos(t - (𝑘௫. 𝑥 + 𝑘௬. 𝑦 + 𝑘௭ . 𝑧)  + ) = p(x,y,z,t) 
 

x c c 
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En complexe OPPH : p(𝑟,t) = po.exp(j(t - 𝑘ሬ⃗ . 𝑟)) avec po = po.ej
   

p(𝑟,t) = po.exp(j(t - 𝑘௫. 𝑥 − 𝑘௬. 𝑦 − 𝑘௭ . 𝑧)) 
 

3. Dérivation formelle pour une OPPH UNIQUEMENT 
 

Soit p(𝑟,t) = po.exp(j(t - 𝑘௫. 𝑥 − 𝑘௬. 𝑦 − 𝑘௭ . 𝑧)) = 𝑝௢ . 𝑒௝൫ఠ௧ିሬ⃗ .ைெሬሬሬሬሬሬሬ⃗ ൯ = 𝑝௢ . 𝑒௝൫ఠ௧ି ೣ.௫ି௞೤.௬ି௞೥.௭൯ 

 

𝒈𝒓𝒂𝒅ሬሬሬሬሬሬሬሬሬሬሬ⃗ 𝒑 =

⎝

⎜
⎜
⎜
⎛

𝝏𝒑

𝝏𝒙
𝝏𝒑

𝝏𝒚
𝝏𝒑

𝝏𝒛⎠

⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎛

𝝏

𝝏𝒙
𝝏

𝝏𝒚
𝝏

𝝏𝒛⎠

⎟
⎟
⎟
⎞

𝒑 = 𝛁ሬሬ⃗ 𝒑 = ൮

−𝒋𝒌𝒙𝒑

−𝒋𝒌𝒚𝒑

−𝒋𝒌𝒛𝒑

൲ = −𝒋 ቌ

𝒌𝒙

𝒌𝒚

𝒌𝒛

ቍ 𝒑 = −𝒋𝒌ሬሬ⃗ . 𝒑 

 
 

Opérateur NABLA 
 

On retient que pour une OPPH UNIQUEMENT exprimée sous la forme 

p(𝑟,t) = 𝑝௢ . 𝑒௝൫ఠ௧ି௞ሬ⃗ .ைெሬሬሬሬሬሬሬ⃗ ൯ 

l’opérateur NABLA 𝛁ሬሬ⃗  ↔ −𝒋𝒌ሬሬ⃗ . 
 

On veillera à respecter l’homogénéité vectorielle et dimensionnelle. 
 
 
Opérateur LAPLACIEN en complexe : 

 p = = ቆ
𝜕

2
𝑝

𝜕𝑥2 +
𝜕

2
𝑝

𝜕𝑦2 +
𝜕

2
𝑝

𝜕𝑧2ቇ = ቀ(−𝑗𝑘௫)ଶ𝑝 + ൫−𝑗𝑘௬൯
ଶ

𝑝 + (−𝑗𝑘௭)ଶ𝑝ቁ = 

(−𝑗)ଶ൫𝑘௫
ଶ + 𝑘௬

ଶ + 𝑘௭
ଶ൯𝑝 = (−𝑗𝑘)ଶ𝑝 

 
On retient que pour une OPPH UNIQUEMENT exprimée sous la forme 

p(𝑟,t) = 𝑝௢ . 𝑒௝൫ఠ௧ି௞ሬ⃗ .ைெሬሬሬሬሬሬሬ⃗ ൯ 

l’opérateur LAPLACIEN  ↔ (-jk)2 

 
Application 1 : Déterminer la relation de dispersion dans le cas d’une onde à 3 dimensions : 
L’équation d’onde s’écrit en complexe : 

0
1

2

2

2







t

p

c
p  

 

D’où si p(M,t) = 𝑝௢ . 𝑒௝൫ఠ௧ି௞ሬ⃗ .ைெሬሬሬሬሬሬሬ⃗ ൯ est une OPPH 

 

p = (-jk)2p  et 
డమ௣

డ௧మ
= (𝑗𝜔)ଶ𝑝 

 
D’où en remplaçant dans l’équation de D’Alembert 
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(-jk)2p −
ଵ

௖మ
(𝑗𝜔)ଶ𝑝 = 0 𝑠𝑜𝑖𝑡 0

2

2
2 








 p

c
k

  

 

On retrouve la relation de dispersion k2 = 
ఠమ

௖మ
 

 
Application 2 : 

Déterminer l’expression du champ des vitesses de l’onde, à partir de l’équation d’Euler, 
en supposant que p(M,t) est une OPPH. 
 

4. Relation entre p et v : impédance acoustique. 
 
Définition :  l'impédance acoustique d’une onde plane est : 

Z = p / v 
 
Considérons une onde progressive plane monochromatique dont la surpression s’écrit :  

p(x,t) = p0.sin(t – k.x + ). 
 

L’équation d’Euler linéarisée s’écrit ici k.p0. cos(t – k.x+ ). 

On en déduit v(x,t) = sin(t – k.x+ )  = sin(t – k.x + ). 

Rappel : la constante d’intégration est nulle, car par hypothèse <v(x,t)> = 0 
 
On a donc pour une onde progressive suivant les x croissants :   

Z+ = 0c 
 
Pour une onde progressive suivant les x décroissants, on a de même :   

Z- = - 0c 
 
L’impédance acoustique d’un milieu est l’impédance d’une onde progressive se déplaçant selon 
les x croissants (c’est une grandeur positive) :  

Z = 0c = 
𝝆𝒐

ඥ𝝆𝒐𝝌𝑺
= ට

𝝆𝒐

𝝌𝑺
 

[Z] = kg.m-3.m.s-1 = kg.m-2.s-1 
 
Ordres de grandeur : (en kg.m-2.s-1 ) 
Zair = 1*340 = 340 ;  Zeau = 103 *1 500 = 1,5.106 ;   Zacier = 7 800* 5 000 = 3,9.107  

Zgaz < Zliquide < Zsolide 

 

 

5. Expressions des champs complexes de pression et de vitesse pour une 
OPPH unidirectionnelle 

 
 

6. Expression de l’intensité sonore I pour une OPPH 
 










x

p

t

v
0

.
p.k

0

0


.
c

p

0

0

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Attention l’intensité sonore 𝐼 =  〈‖𝜋ሬ⃗ (𝑥, 𝑡)‖〉 = 〈ฮ𝑝(𝑥, 𝑡)𝑣(𝑥, 𝑡)ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ฮ〉 est une grandeur 
« quadratique » (produit de deux grandeurs linéaires) on NE peut PAS utiliser les 
expressions complexes de p(x,t) et 𝑣(𝑥, 𝑡)ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗  pour déterminer 𝜋ሬ⃗ (𝑥, 𝑡). 
 
Pour déterminer 𝜋ሬ⃗ (𝑥, 𝑡), il FAUT utiliser les formes réelles de p(x,t) et 𝑣(𝑥, 𝑡)ሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ . 
 
 
Montrer que  

I = 
௣೚௩೚

ଶ
 

où po est l’amplitude de l’onde de surpression et vo est l’amplitude de l’onde de vitesse 
pour une OPPH se propageant dans le sens x croissant. 

 
7. Validation de l’approximation acoustique 

 
Soit un haut-parleur de 100 W qui rayonne sur une surface de 10 m2. 
Déterminer la valeur de l’intensité sonore, puis celle de l’intensité sonore en dB. 
 
Calculer l’amplitude de l’onde de surpression sonore po, de celle de la vitesse vo, de celle 
de la « surmasse volumique » µo, de celle de déplacement de la particule fluide, o.  
 
A quelles grandeurs doit-on comparer les valeurs numériques de po, vo, µo et o pour 
justifier l’approximation acoustique ? 
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IV. Ondes Sphériques Progressives Harmoniques (OSPH) 
 

Le modèle de l’onde plane ne permet pas d’interpréter la localisation de la puissance sonore, d’où la 
nécessité d’introduire le modèle de l’onde sphérique. 

 
1. Le modèle de l’onde sphérique 
 
La « sphère pulsante » au centre O de la sphère 
modélise un haut-parleur qui émet une onde sonore 
de manière isotrope dans toutes les directions de 
l’espace. 
 
Soit le point P et p(P,t) la surpression acoustique en 
ce point. 
 
p(P,t) = p(O, t - ) où  est la durée mise par l’onde 

sonore pour parcourir la distance OP, 𝜏 =
ை௉

௖
=

௥

௖
 

où c est la célérité de l’onde, donc  
p(P,t) = p(r,t) = p(t – r/c). 

 
La surface d’onde est définie par p(t – r/c) = const à t fixé, donc r = const est l’équation de la sphère 
de rayon r passant par le point P. 
 
Les surfaces d’onde sont des sphères, l’onde est dite sphérique. 
 
Le vecteur d’onde 𝑘ሬ⃗  est perpendiculaire à la surface d’onde donc 𝑘ሬ⃗ = 𝑘𝑢௥ሬሬሬሬ⃗ . Le vecteur d’onde est 
radial. 
Comme l’onde sonore est longitudinale 𝑣⃗ est colinéaire à 𝑘ሬ⃗  donc 𝑣⃗ = 𝑣(𝑟, 𝑡). 𝑢௥ሬሬሬሬ⃗  
 

2. Puissance moyenne rayonnée : 
 
Le milieu étant supposé non-absorbant, la puissance moyenne fluant à travers une sphère de rayon r 
centrée sur S est : 

𝑃 =  〈ඵ 𝑝(𝑟, 𝑡).
ௌ௣ è௥௘

𝑣⃗(𝑟, 𝑡). 𝑑𝑆〉 = 〈𝑝(𝑟, 𝑡). 𝑣(𝑟, 𝑡)〉. 4. 𝜋. 𝑟ଶ = 𝐼. 4. 𝜋. 𝑟ଶ 

 

L’intensité acoustique 𝐼 =  
௉

ସ.గ.௥మ
 décroit alors en 1/r2. 

 
On peut en déduire que l’amplitude des champs de pression et de 
vitesse décroit en 1/r 
 

3. Forme de la surpression :  
 

On montre alors qu’une solution harmonique s’écrit :  

𝑝(𝑟, 𝑡) =
𝐴

𝑟
cos (𝜔𝑡 − 𝑘. 𝑟 + 𝜑) 
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L’amplitude de l’onde de surpression est inversement proportionnelle à la distance. 
 

 
p(r,t) est une onde de surpression, solution de l’équation de D’Alembert à 3 dimensions :  

𝜕ଶ𝑝(𝑟, 𝑡)

𝜕𝑡ଶ
= 𝑐ଶ 𝛥𝑝(𝑟, 𝑡) 

 
En coordonnées sphériques, pour p = p(r,t),  le laplacien scalaire s’écrit :  

∆𝑝(𝑟, 𝑡) =  
1

𝑟ଶ

𝜕ଶ(𝑟ଶ𝑝)

𝜕𝑟ଶ
 

On peut montrer que p(r,t) = 
஺

௥
 f(t – r/c) est solution 

 
 

4. Forme de la vitesse : 
 
L’équation d’Euler linéarisée s’écrit :  
 

𝜌଴

𝜕𝑣⃗

𝜕𝑡
= −

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
. 𝑢௥ሬሬሬሬ⃗  

On calcule :  

𝑣⃗ = ൬
𝐴

𝜌଴𝑟ଶ𝜔
sin(𝜔𝑡 − 𝑘. 𝑟 + 𝜑) +

𝐴

𝜌଴𝑟𝑐
cos (𝜔𝑡 − 𝑘. 𝑟 + 𝜑)൰ 𝑢௥ሬሬሬሬ⃗  

 
Le second terme est prépondérant dès que : 

r >> λ 
 
On est alors dans l’approximation de champ lointain. 
 
  

 
5. Onde localement plane : 
 
A grande distance de la source, l’onde sphérique peut-être 
confondue avec son plan tangent, on dit que l’onde est 
localement plane, et si on s’éloigne peu de ce plan tangent, 
on peut supposer que l’amplitude de l’onde reste constante. 
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V. Réflexion et transmission d’une onde sonore à l’interface de 
deux fluides 
 

1. Position du problème 
 
On considère une onde sonore plane progressive harmonique qui se propage unidirectionnellement 
dans l’air dans le sens x croissant. 
 
Exprimer l’onde de surpression et de vitesse en fonction des amplitudes, x et t. 
Rappeler la valeur numérique c1 de la célérité de cette onde, ainsi que l’impédance acoustique Z1 de 
l’air. 
 
En x = 0, l’onde sonore change de milieu qui devient de l’eau.  
Rappeler la valeur numérique c2 de la célérité de l’onde sonore dans l’eau, ainsi que l’impédance 
acoustique Z2 de l’eau. Soit k2 la valeur du vecteur d’onde dans l’eau. A-t-on k1 = k2 ? 
 
A l’interface des milieux air-eau, on observe l’apparition d’une onde réfléchie et d’une onde 
transmise. A quel phénomène ceci est-il analogue ? 
 
Exprimer les champs de pression  pi(x,t), pr(x,t), pt(x,t) et vitesses vi(x,t), vr(x,t), vt(x,t) complexes 
des ondes incidentes, réfléchies et transmises respectivement.  
On note  po (grandeur supposée réelle) l’amplitude de l’onde de surpression incidente 
  por l’amplitude complexe de l’onde de surpression réfléchie 
  pot l’amplitude complexe de l’onde de surpression transmise 
Exprimer les amplitudes complexes des vitesses incidentes, réfléchie et transmise en fonctions des 
amplitudes complexes des pressions respectives et de l’impédance acoustique du milieu. 
 

But du problème : déterminer les amplitudes complexes por et pot 
en fonction des données : po, Z1 et Z2 

 
La résolution de ce problème est faite à l’aide des questions ci-dessous. 

 
2. Conditions à l’interface x = 0 : 

 
La pression est une fonction continue. 
La composante normale de la vitesse est continue. 

 
Dans l’air, milieu 1, coexistent onde incidente et onde réfléchie. Ecrire le champ des pressions et 
des vitesses en tout point de l’air. 
 
Dans l’eau, milieu 2 il n’y a qu’une onde transmise. 
 
En appliquant les deux conditions à la limite, montrer que por et pot sont solutions du système : 
 












211 Z

p

Z

p

Z

p

ppp

otoro

otoro

 

 
Résoudre ce système, pour exprimer por et pot en fonction de po, Z1 et Z2. 
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3. Expressions des coefficients de réflexion et de transmission en amplitude 

 

Définition des coefficients de transmission en pression : 
o

ot

p p

p
  ; en vitesse 

o

ot

v v

v
  

Définition des coefficients de réflexion en pression : 
o

or

p p

p
  ; en vitesse 

o

or

v v

v
  

 

Montrer que 
21

22

ZZ

Z
p 
  ; 

21

12

ZZ

Z
v 
  ; 

21

21

ZZ

ZZ
p 


  ; 

21

21

ZZ

ZZ
v 


  

 
En déduire les expressions des surpressions et vitesse des ondes incidentes, réfléchies et transmises 
en fonction de x, t, po, des coefficients de réflexion ou de transmission et de l’impédance 
acoustique.  
 

4. Etude de cas particuliers : 
 

a) Milieux adaptés Z1 = Z2 : montrer qu’il n’y a pas d’onde réfléchie. 
 

b) Z2 << Z1 et Z2 >> Z1 : montrer qu’il n’y a pas d’onde transmise et qu’il y a 
formation d’onde stationnaire dans le milieu 1. 

On vérifiera que les nœuds de vitesse sont des ventres de pression et réciproquement. 

 
 

5. Coefficients de réflexion et de transmission en puissance 
Ii est le niveau sonore de l’onde incidente ; Ir est le niveau sonore de l’onde réfléchie 
It est le niveau sonore de l’onde transmise 

 

Définition du coefficient de transmission en puissance : 
i

t

I

I
T    

Définition du coefficient de réflexion en puissance :  
i

r

I

I
R   

 

Montrer que 𝑇 =
ସ௓భ௓మ

(௭భା௓మ)మ
  et 

2

21

21












ZZ

ZZ
R  et que R + T = 1 

 
En déduire que  

Ii = It + Ir relation de conservation de la puissance sonore à l’interface entre deux fluides 


