Thermochimie chapitre 2 : Potentiel thermodynamique

PROGRAMME DE 1ère ANNEE						
3. L'énergie : conversions et trar	nsferts					
Notions et contenus		Capacités exigibles	CdE			
3.1. Descriptions microscopique et macroscopique d'un système à l'équilibre						
Corps pur diphasé en équilibre. Diagramme dephases (P,T). Cas de l'équilibre liquide-vapeur : diagramme deClapeyron (P,v), titre en vapeur.	Analyse (P,T). Propo caract soumi Positio (P,v). Déterr un poi	CdE 2 : 13.1 à 13.5				
Équilibre liquide-vapeur de l'eau en présenced'une atmosphère inerte. Humidité relative.	d'étud d'un f sous Utiliser condition	e en œuvre un protocole expérimental le des relations entre paramètres d'état luide à l'équilibre (corps pur monophasé ou deux phases). la notion de pression partielle pour étudier les ons de l'équilibre liquide-vapeur en présence tmosphère inerte.	CdE1 : 18.14 ; 18.15 ; 23.8 à 23.13			
Expérience de sublimation du diiode : https://www.youtube.com/watch?v=dZ2g9p1DMFU Opalescence critique : https://www.youtube.com/watch?v=-AXJISFdC2E						

2.PHÉNOMENES DE TRANSPORT

2.2 Transfert thermique par conduction

2.2.1. Formulation infinitésimale des principes de la thermodynamique	
Énoncer et exploiter les principes de la	CdE 1:
thermodynamique pour une transformation	20.4 ; 20.5 ;
Utiliser avec rigueur les notations d et δ en leur	20.3 ,
	Énoncer et exploiter les principes de la thermodynamique pour une transformation élémentaire.

7. Transformations de la matière : aspects thermodynamiques et cinétiques

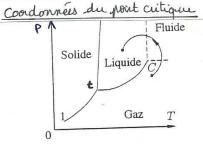
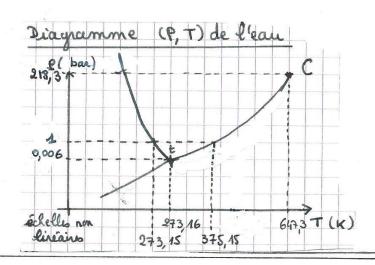
7.2. Deuxième principe de la thermodynamique appliqué aux transformations physico-chimiques				
Enthalpie libre	Justifier que l'enthalpie libre G est le potentiel thermodynamique adapté à l'étude des transformations isothermes, isobares et spontanées. Exprimer l'entropie créée en fonction de la variation d'enthalpie libre.	quoo		
Identités thermodynamiques. Potentiel chimique.	Citer les expressions des différentielles de U, H, G. Distinguer les caractères intensif ou extensif des variables utilisées.	CdE 1 : 20.3 ; 20.8		
Potentiel chimique du corps pur. Conditions d'équilibre d'un corps pur sous plusieurs phases. Paramètres intensifs	Identifier le potentiel chimique d'un corps pur à son enthalpie libre molaire. Établir l'égalité des potentiels chimiques pour un corps pur en équilibre sous plusieurs phases. En déduire l'existence d'une courbe d'équilibre sur un diagramme (P,T). Identifier un jeu de paramètres intensifs indépendants permettant la description d'unsystème physico-chimique en équilibre.			
Évolution d'un système sous plusieurs phases.	Utiliser le potentiel chimique pour prévoir l'évolution d'un système contenant une espèce chimique dans plusieurs phases.			
Potentiel chimique d'un constituant dans un mélange ; enthalpie libre d'un système chimique. Activité	Donner l'expression (admise) du potentiel chimique d'un constituant en fonction de son activité. Exprimer l'enthalpie libre d'un système en fonction des potentiels chimiques.	CdE1: 18.15; 23.14		

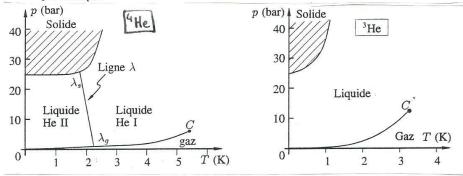
2. Diagrammes (P,T):

domaine	modélisation	commentaires
au voisinage d'une température t_0 °C	$P_{s} = A + B (t - t_{0}) + C (t - t_{0})^{2}$	bonne précision dans un domaine de $10 ^{\circ}$ C autour de t_0
t °C entre 95 °C et 105 °C	$P_{\rm S} = 760 + 27,13 (t - 100) + 0,40 (t - 100)^2$	cette formule donnant $P_{\rm s}$ en mm Hg permet d'atteindre la précision du millième
<i>t</i> °C entre 100 °C et 200 °C	$P_{\rm s} = \left(\frac{t}{100}\right)^4$	formule de DUPERRAY cette formule donnant $P_{\rm s}$ en bar est précise à 2 % près
t °C entre 0 °C et 150 °C	$\log P_{\rm s} = A - \frac{B}{T}$	formule de RANKINE ou de CALLENDAR, en prenant : $P_s = 101400\mathrm{Pa}$; $(P_s = 760\mathrm{mmHg})$; $T = 373,15\mathrm{K}$ $P_s = 13340\mathrm{Pa}$; $(P_s = 100\mathrm{mmHg})$; $T = 325,05\mathrm{K}$ cette formule est correcte avec une précision à 1 % près
t °C entre 0 °C et 200 °C T(K) entre 270 K et 470 K He H ₂ N ₂ O ₂	$\log P_s = A - \frac{B}{T} - C \ln T$ $CO_2 H_2O NH_3 $	formule de DUPRÉ cette formule est correcte avec une excellente précision sur un large domaine de température

647 405,4 304,2 $T_c(K)$ 5,2 33,2 126,2 155 221 p_c (bar) 113 2,3 13

pour l'eau


Diagramme (P,T) - combes de saturation d'un corps pur me présentant qu'une seule vainétécellotropique à l'état solide

Coordonnées dupoint triple

	eau	ammoniac	dioxyde de carbone	oxygène	azote
T_Y (K)	273,16	195,4	216,58	54,4	63,146
p_Y (kPa)	0,613	6,08	517,3	0,146	12,5

Remarque: Lorsqu'un corps présente plusieurs variétés allotropiques, on observe plusieurs points triples qui correspondent chacun à l'équilibre entre deux phases solides et une phase liquide par exemple.

Cas singulier de l'hilium 4: 2 phases liquides

TAS = 1,744 PAS = 29,1 bon

Tag = 2,19k Pag = 0,05 bor

He II : superfluide, brotale chute de augmentation brutale de la viscosité lors de la transition de phone He I » He II, la conduction ti the mique

3 He : pas de point triple.