PSI* 2025/2026 DEVOIR EN TEMPS LIBRE N° 5

Conditionnement du signal

Un capteur LVDT est associé à un conditionneur de signal qui délivre une tension continue proportionnelle à la position du noyau. Cette partie étudie le fonctionnement du conditionneur AD598 dont le schéma fonctionnel fourni par la notice est représenté en figure 7.

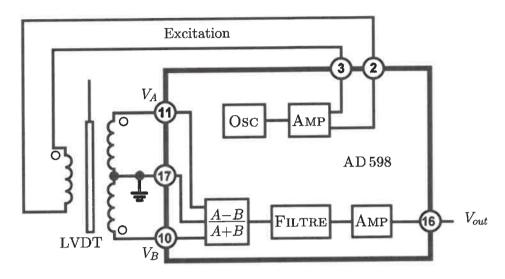


FIGURE 7 – Diagramme bloc fonctionnel du conditionneur AD598

L'AD598 comporte un oscillateur local, noté OSC en figure 7, générant une tension sinusoïdale dont la fréquence peut varier de 20 Hz à 20 kHz, suivi d'un amplificateur de tension qui délivre la tension u_p appliquée aux bornes du circuit primaire du LVDT.

L'oscillateur local produit dans un premier temps une tension périodique fonction triangulaire du temps qui est ensuite transformée en une tension sinusoïdale du temps grâce à un montage conformateur à diodes.

À partir des deux tensions référencées par rapport au point de masse prises aux bornes des deux circuits secondaires du LVDT, $V_A = u_2$ et $V_B = u_1$, le circuit intégré AD598 construit une tension périodique en créneaux symétriques, de rapport cyclique α égal au rapport $\frac{A-B}{A+B}$, où A et B sont respectivement les tensions proportionnelles aux amplitudes des tensions V_A et V_B . L'intérêt du conditionnement proposé par le composant AD598, par rapport aux procédés de détection envisageables, est de produire une tension de sortie proportionnelle au déplacement du noyau. La constante de cette proportionnalité est indépendante de la tension d'alimentation du circuit primaire de LVDT.

L'étude se focalise sur l'alimentation du circuit primaire.

Le bloc OSC de la figure 7 est constitué d'un générateur de tension en triangle suivi d'un convertisseur triangle-sinus à diodes. Le circuit générateur de tension en triangle est représenté en figure 8.

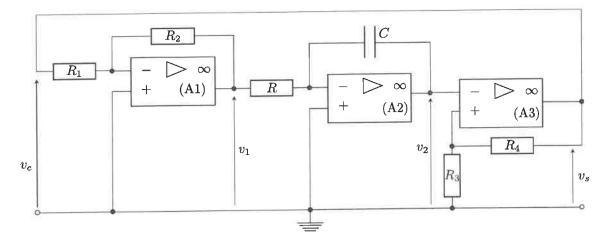


FIGURE 8 – Générateur de triangle.

Les trois Amplificateurs Linéaires Intégrés (ALI) sont idéaux et nommés (A1), (A2) et (A3) (voir figure 8). On notera $+V_{\text{sat}}$ et $-V_{\text{sat}}$ les tensions de saturation haute et basse des ALI.

 \Box – 18. Après avoir rappelé la définition d'un ALI idéal, indiquer quels sont ceux qui fonctionnent en régime linéaire. On justifiera simplement la réponse.

Les tensions $v_{e}\left(t\right),\,v_{1}\left(t\right),\,v_{2}\left(t\right)$ et $v_{s}\left(t\right)$ sont des fonctions non sinusoïdales du temps.

- \Box 19. Établir la relation entre $v_{e}\left(t\right)$ et $v_{1}\left(t\right)$ puis celle entre $v_{1}\left(t\right)$ et $v_{2}\left(t\right)$.
- \Box 20. Déterminer la valeur de v_s selon les valeurs et le sens de variation de v_2 , puis représenter graphiquement ces variations en reportant v_s en ordonnée et v_2 en abscisse. On fera apparaître les valeurs remarquables sur chaque axe du graphique.
- □ 21. En tenant compte des trois résultats précédents, déterminer les variations de v₂ et v_s en fonction du temps. Représenter ces variations sur un même graphe.
 Laquelle des tensions v_e (t), v₁ (t), v₂ (t) et v_s (t) est une fonction triangulaire périodique du temps? On nomme v_t (t) cette tension. Calculer sa période T en fonction de R, C, R₁, R₂, R₃ et R₄.
 - 22. En fixant R=1 k Ω et en prenant $R_1=R_2$ puis, uniquement pour cette application numérique $R_3=R_4$, déterminer la valeur de C permettant d'obtenir une tension $v_t(t)$ de fréquence 2 kHz.

Comment faire pour permettre à un utilisateur de l'AD598 de modifier à volonté cette fréquence?

Exprimer l'amplitude E de la tension $v_t(t)$ en fonction des données du circuit de la figure 8. Sur quels paramètres de ce circuit faut-il agir afin de modifier cette amplitude?

Déterminer la condition sur ces paramètres pour que $E/V_{\rm sat}=0,22$. Calculer dans ce cas la valeur de E en prenant $V_{\rm sat}=15~{\rm V}.$

L'origine des temps étant arbitrairement fixée, la figure 9 contient, d'une part, les variations de la tension triangulaire réduite v_t/E en fonction du temps réduit $\theta=t/T$ et, d'autre part, celles de la tension sinusoïdale réduite v_0/E en fonction de θ que l'on souhaite obtenir après la conversion triangle-sinus.

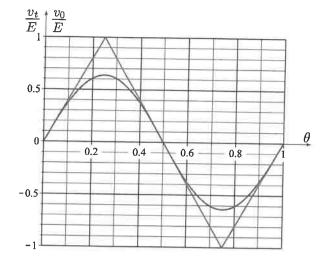


FIGURE 9 - Conversion triangle - sinus.

Afin de réaliser cette conversion, on utilise un montage conformateur à diodes représenté en figure 10. Les diodes sont toutes identiques. En notant i_d leur courant direct et u_d la tension en convention récepteur (figure 10), le fonctionnement de chaque diode est tel que si $i_d > 0$ alors $u_d = U_s > 0$ et si $i_d = 0$ alors $u_d \le U_s$.

Pour toute la suite, on prendra une tension de seuil égale à $U_s = 0.7 \text{ V}$.

Le montage conformateur, alimenté par la tension v_t , est dimensionné pour délivrer une tension v_s se rapprochant au mieux de la tension v_0 représentée en figure 9. Le dimensionnement consiste, entre autres, à choisir correctement les résistances r_1 et r_2 , lorsque $r_0 = 1,0$ k Ω . Ce choix sera effectué pour une valeur du courant de sortie $i_s = 0$.

 \Box - 23. Pour $0 \le \theta = \frac{t}{T} \le \frac{1}{4}$, donner l'expression de v_t en fonction de θ et de E.

On considère l'association des deux diodes dans la cellule en traits pointillés (1).

 \Box - 24. Montrer que les deux diodes ne peuvent conduire le courant simultanément. Montrer qu'il existe une valeur $U_1 > 0$ telle que si $0 \le v_s \le U_1$ alors le courant dans la résistance r_1 est nul et, si $v_s > U_1$, ce courant n'est pas nul. Exprimer U_1 en fonction de U_s .

On considère l'association des quatre diodes dans la cellule en traits pointillés (2).

 \Box - 25. Montrer qu'il existe une valeur $U_2 > 0$ telle que si $0 \le v_s \le U_2$ alors le courant dans la résistance r_2 est nul et si $v_s > U_2$ ce courant n'est pas nul. Exprimer U_2 en fonction de U_s .

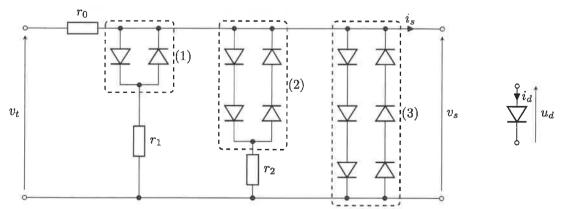


FIGURE 10 - Montage conformateur.

On considère finalement le bloc de la cellule en traits pointillés (3).

 \Box - 26. Montrer que la valeur positive maximale de v_s , notée V_{\max} , vaut 3 U_s .

On note désormais $s(\theta) = V_{\text{max}} \sin(2\pi\theta)$ la tension sinusoïdale idéale que l'on souhaite obtenir en sortie du montage de la figure 10, de même période que v_t .

- \Box 27. Déterminer la relation à imposer entre U_s et E afin que les deux pentes en $\theta=0$ des courbes $v_t(\theta)$ et $s(\theta)$ en fonction de θ soient identiques. On vérifiera que cette condition revient à identifier le rapport E/U_s à une fraction de π et on supposera cette relation vérifiée par la suite.
- \Box 28. Pour $v_s < U_1$, quelle est l'expression de v_s en fonction de v_t puis celle en fonction de θ ? En déduire la valeur θ_1 de θ telle que $v_s(\theta_1) = U_1$. On simplifiera cette valeur en utilisant la condition déduite à la question précédente.
- \Box 29. On suppose pour cette question $U_1 < v_s < U_2$.

Exprimer v_s en fonction de v_t , U_s , r_1 et r_0 puis en fonction de U_s , r_1 , r_0 , E et θ .

Quelle doit être la valeur du rapport $\rho_1 = r_0/r_1$ afin que les pentes des courbes $v_s(\theta)$ et $s(\theta)$ soient identiques lorsque $\theta \to \theta_1$ par valeurs supérieures? On exprimera ρ_1 uniquement en fonction du cosinus de 1/3.

Cette condition étant vérifiée, exprimer v_s en fonction de U_s , ρ_1 , E et θ puis déduire l'expression de θ_2 défini par $v_s(\theta_2) = U_2$ que l'on mettra sous la forme $\theta_2 = \alpha \theta_1$ et dans laquelle on exprimera la constante α uniquement en fonction du cosinus de 1/3.

 \Box - 30. On suppose pour cette question $U_2 < v_s < 3U_1$. Déterminer l'expression de v_s en fonction de U_s, r_0, r_1, r_2, E et θ .

La valeur du rapport $\rho_2=\frac{r_0}{r_2}$ est fixée afin que les pentes des courbes $v_s(\theta)$ et $s(\theta)$ soient identiques lorsque $\theta \to \theta_2$ par valeurs supérieures. On peut alors déterminer la valeur θ_3 telle que $v_s(\theta_3)=3U_1$.

 \Box - 31. Montrer que $v_s(\theta) = 3U_1$ si $\theta_3 < \theta < \frac{1}{4}$.

En réalisant le dimensionnement précédent, on obtient la tension $v_s(\theta)$ représentée en figure 11 sur laquelle figurent également les tensions $v_t(\theta)$ et $s(\theta)$.

 \Box - 32. Proposer un aménagement du montage de la figure 10 permettant de réduire les écarts entre $v_s(\theta)$ et $s(\theta)$.

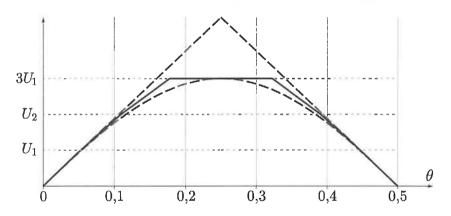


FIGURE 11 – Tensions $v_s(\theta)$, $v_t(\theta)$ et $s(\theta)$.