
NOM:

## Toutes les réponses sont EVIDEMMENT à justifier Sujet A

On considère le circuit constitué du générateur de tension de fém constante *E*, de conducteur de résistance *R* ainsi que d'une bobine d'inductance *L*.

L'interrupteur K est ouvert pour t < 0 le régime stationnaire étant atteint, et fermé pour t > 0. Le condensateur est initialement déchargé.



1. Représenter la tension  $u_R$  aux bornes de la résistance sur le schéma.

2. Donner, à t < 0 les valeurs de :

i

 $u_{\scriptscriptstyle L}$ 

 $u_{\text{R}}$ 

3. Entourer la ou les grandeurs continues à t = 0:

 $u_L$ 

i

 $u_{\text{R}}$ 

- 4. Exprimer  $i(t=0^+) =$
- 5. Exprimer u<sub>L</sub>(t=0<sup>+</sup>)
- 6. Déterminer  $\left(\frac{di_L}{dt}\right)$  (t=0+)

| 7.  | Donner, une fois le régime permanent atteint (t $\rightarrow \infty) $ les valeurs de : i                                                                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $u_L$                                                                                                                                                          |
|     | $u_R$                                                                                                                                                          |
| 8.  | Tracer l'allure de i(t). Précisez la position du régime transitoire et celle du régime permanent.                                                              |
|     |                                                                                                                                                                |
|     |                                                                                                                                                                |
|     |                                                                                                                                                                |
|     |                                                                                                                                                                |
| 9.  | Etablir l'équation différentielle dont $u_R(t)$ est solution pour $t > 0$ . La mettre sous forme                                                               |
|     | canonique. Définir la constante de temps de ce système.                                                                                                        |
|     |                                                                                                                                                                |
|     |                                                                                                                                                                |
|     |                                                                                                                                                                |
| 10. | A partir de la forme canonique de l'équation différentielle, déterminer l'expression de la fonction de transfert $\underline{H} = \frac{u_R}{\underline{E}}$ . |
|     | — <u>E</u>                                                                                                                                                     |
|     |                                                                                                                                                                |
| 11. | En déduire la nature du filtrage réalisé et donner ses caractéristiques.                                                                                       |
|     |                                                                                                                                                                |
|     |                                                                                                                                                                |
| 12  | Donnar daux justifications quant à la stabilité du système                                                                                                     |
| 12. | Donner deux justifications quant à la stabilité du système.                                                                                                    |