
Toutes les réponses sont EVIDEMMENT à justifier Toutes les grandeurs introduites sont à identifier.

Sujet B

Soit $s_{MA}(t) = A.[1 + m.cos(\omega_m t)].cos(\omega_p t)$ l'expression d'un signal de pulsation ω_m modulé en amplitude par une porteuse de pulsation ω_p .

1. Quelle relation d'ordre a-t-on entre ω_m et ω_p ?

 $s_{MA}(t)$ est représenté ci-dessous. En ordonnée les amplitudes sont exprimées en Volt et en abscisse le temps en seconde.

2. En déduire la fréquence f_m du signal ainsi que f_p celle de la porteuse.

3.	Pourquoi faut-il démoduler $s_{MA}(t)$?
4.	Représenter le schéma électrique de la démodulation de $s_{\text{MA}}(t).$
5.	Quel est l'ordre de grandeur de la fréquence de la porteuse en téléphonie mobile ?
6.	Définir un signal modulé en phase.