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Thème : Diffusion particulaire 

APPLICATIONS DIRECTES 

1.  Rappels des notions fondamentales sur la diffusion particulaire : 

1. Quelles sont les conditions nécéssaires pour observer le phénomène de diffusion particulaire ? 

2. Définir le vecteur densité de courant particulaire. 

3. Enoncer la loi de Fick, identifier tous les termes et donner les unités. 

4. Démontrer l’équation locale de la diffusion, reliant la dérivée de la densité moléculaire par rapport 

au temps, à sa dérivée seconde par rapport à la position. 

 

2. Diffusion de la vapeur d'eau : 

1. On assimile la vapeur d’eau à un gaz parfait. Calculer un ordre de grandeur de la concentration 

molaire Co de l’eau sous forme de vapeur pour une pression de 1 bar et la température de 100°C. R = 

8,31 SI. 

Un long tube vertical ouvert, de section S = 12cm2, est maintenu sur une cuve à eau où l'eau est portée 

à ébullition, la pression étant égale à 1 bar. L'extrémité supérieure du tube est à la hauteur h=90 cm au-

dessus de la surface libre de l'eau. Lorsque la vapeur d'eau, assimilée à un gaz parfait, s'évapore à 

travers le tube à la température supposée constante de 100°C, on suppose qu'il s'établit un régime 

stationnaire de diffusion.  

Soit 𝑗𝑁⃗⃗  ⃗ le vecteur densité de flux molaire et D le coefficient de diffusion. 

2. Faire un schéma. A quel endroit du tube la concentration en vapeur d’eau est-elle maximale ? 

Dans quelle direction et quel sens se déplacent les molécules de vapeur d’eau ?  

En déduire la direction et le sens de 𝑗𝑁⃗⃗  ⃗ . Quelles sont les unités de jN, vecteur densité de flux 

molaire ? 

3. Sachant que la masse d'eau évaporée est de 90 mg par heure, déterminer un ordre de grandeur 

de la valeur de jN dans le tube. M(H2O) = 18 g.mol-1. 

4. On rappelle que le régime stationnaire est atteint dans le tube. Montrer que le flux particulaire 

est constant et uniforme dans le tube. 

5. En déduire la concentration molaire C(z) de la vapeur d'eau dans le tube en fonction de z, D, jN 

et de Co.  

6. En déduire l’expression de C(h), au sommet du tube en fonction de ces mêmes variables. 

7. Un courant d'air approprié permet d'éliminer complètement l'eau évaporée au sommet du tube 

en maintenant un état stationnaire de diffusion. Que vaut alors C(h) ? 

8. En déduire un ordre de grandeur du coefficient de diffusion de la vapeur d'eau dans les 

conditions de l'expérience. 

9. En déduire la durée caractéristique de la diffusion 

 

3. Diffusion de dihydrogène à travers une membrane 

Soit un ballon de baudruche rempli de dihydrogène ; ce gaz diffuse à travers le caoutchouc de 

l’enveloppe, modélisé par un problème à une dimension en régime stationnaire. En x = 0 la 

concentration massique de H2 est co = 80 g.cm-3 et en x = L (épaisseur du ballon) = 0,1 mm la 

concentration massique cL est négligeable. 

Le coefficient de diffusion D de H2 à travers la membrane est D = 10-9 m2.s-1. Quelle masse de H2 perd 

un ballon de surface S = 0,1 m2 par unité de temps ? 

 



EXERCICES : 

I. Décantation statique dans le traitement des eaux (CCINP PSI 2022) 

La clarification par décantation est une des étapes réalisées dans le traitement des eaux des stations 

d'épuration. Elle consiste à éliminer les particules polluantes en suspension dans l’eau polluée. 

 
Le bassin de décantation est de longueur Lb et de profondeur db, sa largeur est indifférente. On note 

respectivement  et e la viscosité dynamique et la masse volumique de l’eau polluée.  

On note o la masse volumique des particules polluantes, supposée constante. On a : 0 > e 

L’axe Oz est vertical descendant. Le niveau d’entrée de l’eau dans le bassin correspond à la cote z = 0. 

On suppose que les particules polluantes sont sphériques, de rayon r, et qu’elles sont soumises à la 

force de frottement fluide :  𝐹  = − 6πηr𝑣 , où 𝑣  est la vitesse des particules.  

Ces particules sont également soumises à la poussée d’Archimède Π⃗⃗ =  − 𝜌𝑒
4

3
𝜋𝑟3𝑔 .  

On considère que l’eau arrive en amont du bassin avec une densité en particules polluantes notée N0. 

Dans un premier temps, l'eau ne circule pas horizontalement, 𝑢⃗  = 0⃗ , et les particules polluantes qu'elle 

contient chutent verticalement. Compte tenu des phénomènes de transport des particules polluantes 

dans le bassin, la densité en particules polluantes n’est pas uniforme sur la hauteur du bassin. Elle 

dépend de la profondeur z. Dans le bassin, on note n(z) la densité en particules polluantes à l’altitude z 

et n0 la valeur associée à l’altitude z = 0, soit n0 = n(z = 0). 

1. À partir de l’équation différentielle du mouvement, issue de la seconde loi de Newton, établir, 

en fonction de 0 , e , r,  et de l’accélération g de la pesanteur, la vitesse limite 

 𝑣 l = vl𝑒 z atteinte par ces particules. Quel est le signe de vl ? Exprimer en fonction de o, r et de 

 , le temps caractéristique c d’établissement de cette vitesse limite.  

On supposera par la suite que la constante de temps c est très faible devant le temps de sédimentation 

(i.e. le temps de chute dans le bassin) de sorte que le mouvement des particules est considéré comme 

uniforme à la vitesse 𝑣 l .  
2. Cette chute des particules est à l’origine d’un courant convectif vertical des particules.  

On note : 𝑗  = j(z) 𝑒 z , le vecteur densité de courant de particules associé. Préciser l’unité de 𝑗 . Puis 

exprimer le vecteur 𝑗  en fonction de n(z) et de  𝑣 l.  

En plus du courant précédent, on observe l’existence d’un second courant qui résulte d’un phénomène 

de diffusion. On note D le coefficient de diffusivité des particules dans l’eau et : 𝑗  D = jD(z) 𝑒 z le vecteur 

densité de courant de particules associé à ce second courant. 
3. Rappeler la loi de Fick et préciser les unités des grandeurs qui interviennent. Justifier qualitativement 

l’existence de ce courant de diffusion. Préciser s’il est ascendant ou descendant.  

4. En régime permanent, ces deux courants se compensent. En déduire, en fonction de n0, D et de vl 

l’expression de la densité de particules n(z). Représenter graphiquement la fonction n(z) en fonction de 

z.  

5. Par conservation du nombre de particules sur une tranche verticale du bassin, exprimer n0 en fonction 

de N0, D, db et de vl.  



6. Définir en fonction de db, D et de vl, un temps caractéristique S de sédimentation, ainsi qu’un temps 

caractéristique D de diffusion des particules sur la hauteur du bassin.  

7. Exprimer n0 en fonction de N0, S et de D . À quelle condition portant sur S et D , la décantation 

statique permet-elle une clarification de l’eau ? 

II. Diffusion moléculaire à travers une membrane : 

La diffusion de molécules à travers une 

membrane est utilisée dans des domaines très 

divers, en médecine par exemple.  

On considère le dispositif représenté ci-contre  

Les deux compartiments séparés par une membrane verticale poreuse 

contiennent une même solution moléculaire, mais à des concentrations 

molaires volumiques différentes C1 et C2. Leurs volumes constants seront 

notés respectivement V1 et V2. La membrane de surface S et d'épaisseur e, 

comporte par unité de surface n pores cylindriques d'axe horizontal normal 

à la paroi. Les pores sont supposés identiques. 

 1. Dans un premier temps, on ne considère qu’un seul pore, de longueur e. Justifier qu’un pore 

est siège d’un phénomène de diffusion particulaire. Etablir l'équation locale de la diffusion dans ce 

pore. On appelle D le coefficient de diffusion des molécules dans la membrane et C(x,t) la 

concentration molaire à l'abscisse x et à l'instant t dans le pore. Quelles sont les unités de D ? 

 2. A une date t les concentrations maintenues homogènes sur les volumes V1 et V2 sont C1(t) et 

C2(t). Exprimer C(x,t) lorsque le régime de diffusion stationnaire est atteint dans le pore en fonction de 

e, C1(t) et C2(t). 

  3. En déduire le flux molaire à travers un pore, puis le flux molaire à travers toute la membrane, 

que l’on exprimera en fonction de C(t) = C1(t) - C2(t).  

4. Déduire que le vecteur densité de flux molaire à travers toute la membrane est de la forme:  
j K Cim =   où  est un vecteur unitaire de Ox. 

Exprimer K, appelé perméabilité de la membrane, en fonction de n, D, e et r rayon d'un pore. Quelles 

sont les unités de K ? 

 5. AN: Calculer le rayon d'un pore.K = 10-6 SI ; n = 106 pores par cm2 ; e = 10 µm ; D = 10-9 

SI 

 6. On suppose que C1t) > C2(t). Exprimer dn1 /dt la variation de la quantité n1 du compartiment 

1 en fonction du temps, en fonction de C1(t) et V1 puis en fonction de S, K et C(t).  

Idem pour dn2 /dt dans le compartiment 2. 

En déduire l'équation différentielle dont C(t) est solution. 

 7. Intégrer cette équation et tracer C(t). Quelle est la constante de temps de ce phénomène ? 

Au bout de quelle durée la différence des concentrations est-elle égale au dixième de sa valeur initiale ? 

Données : V1 = 2 L ; V2 = 1 L ; S = 200 cm2. 

 

III. Transport d’oxygène dans le sang  

Le sang joue un rôle moteur dans le transport de l’oxygène et des 

nutriments vers les organes du corps et le transport des déchets produits 

par ces organes vers des organes spécialisés dans le traitement des 

déchets. Le cœur joue le rôle d’une pompe faisant circuler le sang vers les 

organes. Le sang arrive en contact avec les organes en passant par des 

artères, puis des artérioles et finalement des capillaires. Il revient au cœur 

en partant des capillaires, transitant par les veinules pour aboutir aux veines. 
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Les organes ont un besoin régulier en oxygène. Le coefficient de diffusion de l’oxygène dans un milieu 

aqueux est Deau ≈10 −9 m2.s−1 .  
1. Montrer, par une estimation numérique qualitative, que le transport de l’oxygène vers un organe ne 

saurait se faire par le seul phénomène de diffusion de l’oxygène de l’air à travers la peau. Par quel 

mécanisme dominant le sang transporte-t-il l’oxygène ?  

Le sang se charge en oxygène par diffusion de l’oxygène contenu dans les alvéoles du poumon vers 

le capillaire périphérique de l’alvéole. Les alvéoles sont supposées sphériques (Fig. ci-contre), de 

rayon Ralv ≈10 −4 m. Le sang circule dans le capillaire à la vitesse moyenne v ≈10−3 m.s −1.  
2. Calculer le temps de contact, δts, du sang avec l’alvéole. Le rayon du capillaire est Rcap ≈10 −5 m.  

Le coefficient de diffusion de l’oxygène dans l’air est Dair ≈1,8×10−5 m2.s−1 .  
3. Estimer le temps de diffusion d’une molécule d’oxygène par ce mécanisme, en convenant que c’est la 

somme du temps de diffusion dans l’air (alvéole) et du temps de diffusion en milieu aqueux (capillaire). 

Montrer que l’échange d’air entre l’alvéole et le sang a maintenant le temps de s’établir. 

IV. Alimentation d’un organe en nutriments  

Le sang joue un rôle moteur dans le transport de l’oxygène et des nutriments vers les organes du corps 

et le transport des déchets produits par ces organes vers des organes spécialisés dans le traitement des 

déchets. Le cœur joue le rôle d’une pompe faisant circuler le sang vers les organes. Le sang arrive en 

contact avec les organes en passant par des artères, puis des artérioles et finalement des capillaires. Il 

revient au cœur en partant des capillaires, transitant par les veinules pour aboutir aux veines. 

L’alimentation d’un organe en un nutriment transporté par le sang 

s’effectue par échange entre le sang et l’organe, à travers les parois des 

capillaires. Ces capillaires sont des tubes cylindriques de rayon R et de 

longueur L, joignant une artériole à une veinule. On note Cc(z) la 

concentration molaire (mol.m−3) d’un nutriment dans le capillaire et 

Corg celle du nutriment dans l’organe à proximité de la surface du 

capillaire. Le capillaire cède à l’organe le nutriment avec une densité de 

courant molaire (flux surfacique) j = γ (Cc (z)− Corg (z)) où γ est un 

paramètre constant.  
1. Le nutriment étant transporté par le sang, quel est la nature du 

phénomène de transport étudié, diffusion ou convection ? 

2. En déduire l’expression du vecteur de densité molaire de nutriment 

dans le sang en fonction de Cc(z) et vS, vitesse du sang. 

3. Déterminer la dimension de γ .  

On considère le régime stationnaire. 
4. Effectuer le bilan de matière en nutriment, exprimant l’équilibre 

dynamique des flux entrant et sortant entre les tranches de cotes z et 

z + d z et en déduire l’équation différentielle d’ordre 1, vérifiée par Cc (z), en supposant que le sang a 

une vitesse d’écoulement constante, vS . Cette équation fait intervenir la fonction Corg (z).  

5. On admet ici que Corg (z)= K, une constante ; déterminer alors Cc(z) en fonction de K, Cc(0) et de la 

longueur caractéristique L0 = RvS / 2γ .  

On considère que l’organe est correctement alimenté si |
𝐶𝑐(𝐿)−𝐾

𝐶𝑐(0)−𝐾
| ≥ 30%. 

6. Sachant que vS = 2,8×10−3 m.s−1 , R = 10−5m et L =1mm, déterminer la valeur maximale du coefficient γ 

pour que la relation précédente soit satisfaite. 

 


