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Thème : Equation de D’Alembert 

APPLICATIONS DIRECTES 
1. Corde de guitare  

1. Sachant que la célérité d’une onde sur une corde dépend de la tension de la corde et de sa masse 
linéique, déterminer par analyse dimensionnelle l’expression de la célérité de l’onde en fonction de 
ces deux grandeurs. 

2. En déduire la relation entre la fréquence fondamentale du son émis par la corde et la tension de celle-
ci. Comment varie la tonalité lorsqu’on tend la corde ? 

3. Quelle tension doit-on appliquer à une corde de guitare pour qu’elle sonne un La3 à 440 Hz, sachant 
que la longueur du manche est de 617 mm, le diamètre de la corde est 0,86 mm. La corde est en Nickel :  = 
7.103 kg.m-3. 
 

2. Equation de propagation d’une onde sur une corde 
Etablir l’équation de propagation y(x,t) d’une onde sur une corde. Quelle est la nature de cette onde 
(transverse ou longitudinale) ? Quelle est sa direction de propagation ? Sa célérité c ? 
Donner la forme d’une solution progressive harmonique. Définir 𝑘ሬ⃗ , le vecteur d’onde. Rechercher la relation 
de dispersion. 
On suppose que cette corde de longueur L est fixée à ses deux extrémités et on cherche les solutions sous 
forme d’OPH. Montrer que les solutions sont forcément stationnaires. Définir un nœud de vibration, un 
ventre de vibration. Tracer l’allure de la corde à 3 instants différents lorsqu’on observe 5 nœuds de 
vibration. Exprimer alors la fréquence de l’onde émise en fonction de L ? 
 

3. Etude des modes propres d’une corde 
Lors d’une manipulation avec la corde de Melde on trouve les résultats suivants : 
1. Pour une même longueur L de la corde et une même masse M accrochée à celle-ci on trouve une 
fréquence de résonance à 19 Hz pour deux fuseaux, à 28 Hz pour trois fuseaux. 

a. Représenter l’allure de la corde pour les deux situations envisagées. 
b. Quelle relation a-t-on entre deux nœuds consécutifs ? 
c. Les valeurs numériques des fréquences mesurées sont-elles compatibles entre-elles ? 
d. Quelles seraient les fréquences de résonance suivantes ? 

2. La longueur de la corde est L = 117 cm. Quelle est la vitesse c de propagation d’une perturbation sur cette 
corde ? 
3. Sachant que la célérité d’une onde sur une corde dépend de la tension de la corde et de sa masse linéique, 
déterminer par analyse dimensionnelle l’expression de la célérité de l’onde en fonction de ces deux 
grandeurs. 
4. M = 25 g.  Quelle est la tension de la corde ? En déduire un ordre de grandeur de la masse linéique de la 
corde. 

 

4. Propagation dans une ligne coaxiale 
Le câble est composé de deux conducteurs cylindriques coaxiaux séparés par un isolant.  
Le conducteur central, cylindre de rayon a, constitue « l’âme » du câble, le conducteur extérieur, de rayon b, 
constitue la « gaine ».  
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Une tranche infinitésimale d’épaisseur dx d’une ligne 
électrique bifilaire peut-être modélisée par le schéma ci-
contre, comportant une inductance élémentaire dL = dx 
et une capacité élémentaire dC = dx. On traite ce 
circuit de faible dimension dans le cadre de l’ARQS. 

1. Appliquer la loi des nœuds pour 

déterminer une relation entre 
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(relation 1). 

2. Appliquer la loi des mailles pour déterminer une relation entre 
x

v




et 
t

i




(relation 2). 

Les relations (1) et (2) sont des relations différentielle couplées entre i(x,t) et v(x,t). On va les découpler, pour 
obtenir deux équations de d’Alembert avec i(x,t) solution de l’une et v(x,t) solution de l’autre. 

3. Donner l’expression des deux équations de d’Alembert recherchées. Quelle est l’ordre des 
dérivées dans l’équation de D’Alembert ? Comment peut-on obtenir un tel ordre à partir des relations (1) et 
(2) ? 
On admet le critère de Schwartz, qui permet d’intervertir l’ordre des dérivations lorsque les variables sont 
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4. Etablir les deux équations de d’Alembert et exprimer la célérité c correspondante. Que peut-on 
en conclure ? 

5. Donner l’expression d’une OPH de courant se propageant selon 𝒖ሬሬ⃗ x. Même question pour une 
OPH de tension. Montrer à partir de la relation (1) que le rapport v(x,t) / i(x,t) est une constante liée aux 
caractéristiques de la ligne.  

6. Mêmes questions pour des OPH se propageant selon –𝒖ሬሬ⃗ x.  
On ferme en x = 0 une ligne semi-infinie s’étendant de x = - ∞ à x = 0 sur une résistance R.  

7. Quelle relation cette résistance impose-t-elle en x = 0 ? En déduire une condition sur R telle qu’une 
OPH puisse se propager dans le sens +𝒖ሬሬ⃗ x sur cette ligne semi-infinie.  Cette valeur particulière de 
R est appelée impédance caractéristique de ligne. Elle vaut en général 50  (cf TP) 

8. Application numérique : La célérité de l’onde dans le câble est de l’ordre de 2.107 m.s-1, déterminer 
les valeurs de  et  qui modélisent ce câble. 

On ferme maintenant la ligne semi-infinie en x = 0 par un court-circuit. 
9. Que peut-on en déduire pour v(x=0, t) ?  
10. Une onde progressive harmonique incidente vi(x,t) = A cos (t – kx) est émise en x = - ∞. Quelle 

est alors la forme des solutions pour v(x,t) ? En déduire l’expression de la tension v(x,t). 
Représentation graphique. 

11. A partir de la relation (1) en déduire l’expression du courant i(x,t) en tout point de la ligne. 
Représentation graphique. Conclusion. 

On laisse maintenant la ligne semi-infinie en x = 0 en circuit ouvert. 
12. Quelle est la valeur du courant i(x=0,t) ? Donner, par analogie avec les résultats précédents la forme 

de i(x,t) puis celle de v(x,t) si une OPH est émise par le générateur. Représentations graphiques. 
 
EXERCICES : 
I Produire de la musique avec des fils d’araignée 
Du fait de leurs propriétés mécaniques si particulières (valeur importante du module de Young, large 
domaine d’élasticité et faible masse linéique), des physiciens ont récemment eu l’idée d’assembler des 
milliers de fils de l’araignée Nephila pilipes, particulièrement résistants, pour fabriquer des cordes de 
violon. 
Lorsque la corde fabriquée est utilisée pour produire du son, il convient de s’assurer que sa tension soit 

bien inférieure à sa tension de rupture Tr, mais également que la corde fonctionne dans son régime 
élastique. Les premiers résultats obtenus se sont révélés très encourageants et prometteurs notamment 
en ce qui concerne la qualité du timbre puisque le spectre du son produit présente de nombreux pics 
d’amplitude importante à hautes fréquences. 

i(x) 

v(x) v(x+dx) 
dL = dx 

dC = dx 

i(x+dx) 



On étudie les mouvements d’un fil d’araignée de longueur ℓ, de masse linéique μ, autour de sa position 

d’équilibre. Au repos, le fil est rectiligne et parallèle à l’axe horizontal (Ox). On note z(x,t) le déplacement 

du point du fil à l’abscisse x à l’instant t par rapport à sa position d’équilibre z = 0. On ne considère que les 

mouvements latéraux de faible amplitude s’effectuant dans le plan Oxz (Fig. 8). Le fil étant accroché en 

ses deux extrémités en deux points fixes. La tension du fil au point d’abscisse x à l’instant t est notée : 

𝑇ሬ⃗ (x,t) = Tx(x,t) êx + Tz(x,t) êz. 

 
On effectue les deux hypothèses suivantes : 

• La déflexion est de faible amplitude de même que l’angle (x,t) que fait le fil avec l’horizontale 

à la position x et à l’instant t (voir Fig. 8), ce qui entraîne : |డ௭

డ௫
 | << 1 ; 

• On néglige les effets de la pesanteur. 
 

1 - On considère la portion de fil comprise entre les plans d’abscisses x et x + dx. Exprimer la longueur de 

portion de fil ds, cos[(x,t)] et sin[(x,t)] en fonction de dx et డ௭

డ௫
. 

En appliquant le théorème de la résultante cinétique à cette portion de fil, montrer que Tx(x,t) ne dépend 

pas de x. Que peut-on conclure pour la norme T de la tension dans le fil ? 

2 - Montrer que le déplacement du fil z(x,t) vérifie alors l’équation aux dérivées partielles : 
𝜕ଶ𝑧

𝜕𝑡ଶ
− 𝑐ଶ

𝜕ଶ𝑧

𝜕𝑥ଶ
= 0 

On exprimera c en fonction de T et μ. Que représente cette grandeur physique ? 

3 - Après avoir posé u(x,t) = x−ct et v(x,t)= x+ct, montrer que des fonctions de la forme  

z(x,t) = f(x−ct) + g(x+ct) sont des solutions de cette équation. Interpréter le sens physique des fonctions f 

et g. 
 
On cherche les solutions correspondant à un régime purement sinusoidal. On utilise la représentation 
complexe de ces solutions sous la forme 

z(x,t) = Aej(t – kx) + Be j(t + kx)   

où  est la pulsation du signal, k l’amplitude du vecteur d’onde, A et B des amplitudes complexes. 

4 - Traduire les conditions aux limites imposées au fil en des contraintes sur z(x,t). 

En déduire la relation entre A et B ainsi que les valeurs de  permises. 
Comment appelle-t-on ce type d’onde et pourquoi ? 
 
 



5 - Sachant que la fréquence de vibration de la note jouée (correspondant à la fréquence de la note 
fondamentale) vaut 300 Hz, que la longueur du fil est ℓ = ଵ

ଷ
 m et que sa masse linéique est  

μ = 0,5 mg.m-1, quelle doit être la tension T appliquée à la corde ? 

Sachant que la tension Te au-delà de laquelle la corde n’est plus dans son régime élastique est de l’ordre de 
10 N, que pouvez-vous conclure ? 
 
Dans le cadre d’un modèle plus élaboré on prend en compte la raideur du fil à travers son module de 

Young E. L’équation de propagation des ondes de déformation de faible amplitude dans un fil de rayon a 
devient alors : 

µ
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− 𝑇
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𝜕𝑥ଶ
+  
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4

𝜕ସ𝑧

𝜕𝑥ସ
= 0 

6 - Etablir la relation de dispersion donnant  en fonction de k et des paramètres du problème. En 
conservant l’expression de kn déterminée en 4, montrer que les fréquences propres de la corde s’écrivent 
alors sous la forme : 

𝑓௡ =
𝑛𝑐

2ℓ
ඥ1 + 𝐵𝑛ଶ 

où B est une grandeur physique que l’on exprimera en fonction de E, T, ℓ et a. 

Sachant que pour la corde fabriquée à partir des fils d’araignée E = 6,0 GPa et a = 350 μm et que pour une 

corde classique E = 2,5 GPa et a = 400 μm, que pouvez-vous conclure sur la nature du son produit à T et ℓ 
fixées ? 
 
II.  Ondes stationnaires sur une corde de guitare 

Une corde de guitare de masse linéique de longueur L est fixée à ses deux extrémités. Les 
frottements ainsi que le poids sont négligés et la tension est supposée constante. 

1. Initialement la corde est horizontale et au repos, on l’écarte localement de sa position d’équilibre en lui 
appliquant une petite déformation verticale, qui à l’abscisse x et à l’instant t, s’écrit z(x,t). 

a. Donner l’équation aux dérivées partielles à laquelle satisfait z(x,t). Exprimer la célérité c(µ, T) de 
l’onde de déformation sur la corde par une analyse dimensionnelle, où T est la tension de la corde. 

b. Justifier que l’on recherche une solution de cette équation sous la forme d’une fonction à variables 
séparées z(x,t) = zo cos(t + o). cos(kx + o). Déterminer la relation liant k et . 
2.  a. Montrer que  ne peut prendre qu’une série de valeurs discrètes n. Quel nom donne-t-on à n ? 
Exprimer n en fonction de L, n et c. 

b. Exprimer zn(x,t) l’élongation de l’harmonique de rang n. Déterminer l’expression de la longueur 
d’onde n en fonction de L. 

c. Déterminer la position, ainsi que le nombre, des nœuds et des ventres dans le mode n. 
d. Représenter graphiquement l’allure de la corde dans ses trois premiers modes. 

3. Une guitare électrique comporte 6 cordes en acier de même longueur L = 0,63 m et de masse volumique 
= 7 800 kg.m-3. 
N° de la corde 1 2 3 4 5 6 
Fréquence du fondamental (Hz) 82,5 110 147 196 247 330 
Diamètre (mm) (d) 1,12 0,89 0,70 0,55 0,35 0,25 

Déterminer la tension de la corde en fonction de , d, L et de la fréquence du fondamental. AN pour que la 
guitare soit accordée. 
Quelle variation relative peut être tolérée sur la tension d’une corde pour que sa fréquence fondamentale ne 
varie pas de plus de 1% ? 
  



III. Etude expérimentale d’un câble coaxial 
Un générateur, branché à l’entrée (z = 0) d’un câble coaxial de longueur L = 100 m, délivre des 
signaux périodiques de période T, de valeur Vo positive sur une durée et de valeur nulle le 
reste de la période.  

 
L’autre extrémité (z = L) du câble est refermé par une résistance R.  
A l’aide d’un oscilloscope, on observe en x = 0 la superposition de l’onde incidente délivrée par 
le générateur et de l’onde réfléchie. 
1. On suppose que R=0. A partir de la valeur de la tension en x = L, justifier que le coefficient 

de réflexion est négatif.  
2. En prenant en compte les phénomènes de réflexion, d’amortissement (l’amplitude de l’onde 

réfléchie est inférieure à l’amplitude de l’onde incidente, on pose Vr = KVo) et de 
propagation, et sachant que le retard t dû à la propagation est inférieur à T/4, dessiner sur le 
même schéma la forme de l’onde incidente Vi(0,t) et réfléchie Vr(0,t), puis sur un autre 
schéma, en concordance de temps la forme de l’onde totale Vtot(0,t) au point z = 0. Indiquer 
t sur le schéma. 

3. Par identification avec les résultats de la question précédente, sur l’oscillogramme ci-dessoue, 
indiquer la valeur V = 0, la valeur V = Vo, la valeur V = Vr ainsi que t. Déterminer une 
valeur approchée de la vitesse de propagation le long du câble. 

4. Evaluer le coefficient d’amortissement K.  
 



On suppose que le coefficient K ne dépend pas de la valeur de R. 
5. A partir des oscillogrammes ci-dessous, définir et déterminer la valeur du coefficient de 

réflexion de l’onde en x = L pour différentes valeurs de R. En déduire la valeur 
caractéristique de R, pour laquelle le coefficient de réflexion est nul. 

 
 
 

 
 

 


