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Theéme : Equation de D’ Alembert

APPLICATIONS DIRECTES
1. Corde de guitare

1. Sachant que la célérité d’une onde sur une corde dépend de la tension de la corde et de sa masse
linéique, déterminer par analyse dimensionnelle 1’expression de la célérité de 1’onde en fonction de
ces deux grandeurs.

2. En déduire la relation entre la fréquence fondamentale du son émis par la corde et la tension de celle-
ci. Comment varie la tonalité lorsqu’on tend la corde ?

3. Quelle tension doit-on appliquer a une corde de guitare pour qu’elle sonne un Las a 440 Hz, sachant

que la longueur du manche est de 617 mm, le diametre de la corde est 0,86 mm. La corde est en Nickel : p =
7.10°kg.m>.

2. Equation de propagation d’une onde sur une corde
Etablir I’équation de propagation y(x,t) d’une onde sur une corde. Quelle est la nature de cette onde
(transverse ou longitudinale) ? Quelle est sa direction de propagation ? Sa célérité ¢ ?

Donner la forme d’une solution progressive harmonique. Définir E, le vecteur d’onde. Rechercher la relation
de dispersion.

On suppose que cette corde de longueur L est fixée a ses deux extrémités et on cherche les solutions sous
forme d’OPH. Montrer que les solutions sont forcément stationnaires. Définir un nceud de vibration, un
ventre de vibration. Tracer 1’allure de la corde a 3 instants différents lorsqu’on observe 5 nceuds de
vibration. Exprimer alors la fréquence de I’onde émise en fonction de L ?

3. Etude des modes propres d’une corde

Lors d’une manipulation avec la corde de Melde on trouve les résultats suivants :
1. Pour une méme longueur L de la corde et une méme masse M accrochée a celle-ci on trouve une
fréquence de résonance a 19 Hz pour deux fuseaux, a 28 Hz pour trois fuseaux.

a. Représenter I’allure de la corde pour les deux situations envisagées.

b. Quelle relation a-t-on entre deux nceuds consécutifs ?

c. Les valeurs numériques des fréquences mesurées sont-elles compatibles entre-elles ?

d. Quelles seraient les fréquences de résonance suivantes ?
2. La longueur de la corde est L = 117 cm. Quelle est la vitesse ¢ de propagation d’une perturbation sur cette
corde ?
3. Sachant que la célérité d’une onde sur une corde dépend de la tension de la corde et de sa masse liné€ique,
déterminer par analyse dimensionnelle 1I’expression de la célérité de 1’onde en fonction de ces deux
grandeurs.
4. M =25 g. Quelle est la tension de la corde ? En déduire un ordre de grandeur de la masse linéique de la
corde.

4. Propagation dans une ligne coaxiale
Le cable est composé de deux conducteurs cylindriques coaxiaux séparés par un isolant.
Le conducteur central, cylindre de rayon a, constitue « I’ame » du cable, le conducteur extérieur, de rayon b,
constitue la « gaine ».
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Une tranche infinitésimale d’épaisseur dx d’une ligne

électrique bifilaire peut-étre modélisée par le schéma ci- _I(_Xw_lbiﬁ)
contre, comportant une inductance élémentaire dL = Adx
et une capacité ¢lémentaire dC = I' dx. On traite ce IV(X) dL = Adx —L | v(x+dx)
circuit de faible dimension dans le cadre de I’ARQS. dC=TIdx _I_
1. Appliquer la loi des nceuds pour

, . ) oi , Ov )
déterminer une relation entre a—l et v (relation 1).
X ¢

2. Appliquer la loi des mailles pour déterminer une relation entre ? et %(relation 2).
X ¢

Les relations (1) et (2) sont des relations différentielle couplées entre i(x,t) et v(x,t). On va les découpler, pour
obtenir deux équations de d’Alembert avec i(X,t) solution de I’une et v(x,t) solution de 1’autre.

3. Donner I’expression des deux équations de d’Alembert recherchées. Quelle est 1’ordre des
dérivées dans 1’équation de D’ Alembert ? Comment peut-on obtenir un tel ordre a partir des relations (1) et
(2)?

On admet le critére de Schwartz, qui permet d’intervertir I’ordre des dérivations lorsque les variables sont

indépendantes : i(gj = 2(3)
ox\ot) ot\ox

4. Etablir les deux équations de d’ Alembert et exprimer la célérité ¢ correspondante. Que peut-on
en conclure ?
5. Donner I’expression d’une OPH de courant se propageant selon Ux. Méme question pour une

OPH de tension. Montrer a partir de la relation (1) que le rapport v(x,t) / i(X,t) est une constante liée aux
caractéristiques de la ligne.
6. Mémes questions pour des OPH se propageant selon —ux.
On ferme en x = 0 une ligne semi-infinie s’étendant de x = - o0 a x = 0 sur une résistance R.
7. Quelle relation cette résistance impose-t-elle en x =0 ? En déduire une condition sur R telle qu’une
OPH puisse se propager dans le sens +x sur cette ligne semi-infinie. Cette valeur particuliére de
R est appelée impédance caractéristique de ligne. Elle vaut en général 50 Q. (cf TP)
8. Application numérique : La célérité de I’onde dans le cable est de I’ordre de 2.10” m.s™!, déterminer
les valeurs de A et I qui modélisent ce cable.
On ferme maintenant la ligne semi-infinie en x = 0 par un court-circuit.
9. Que peut-on en déduire pour v(x=0, t) ?
10. Une onde progressive harmonique incidente vi(x,t) = A cos (ot — kx) est émise en x = - . Quelle
est alors la forme des solutions pour v(x,t) ? En déduire 1’expression de la tension v(x,t).
Représentation graphique.
11. A partir de la relation (1) en déduire I’expression du courant i(x,t) en tout point de la ligne.
Représentation graphique. Conclusion.
On laisse maintenant la ligne semi-infinie en x = 0 en circuit ouvert.
12. Quelle est la valeur du courant i(x=0,t) ? Donner, par analogie avec les résultats précédents la forme
de i(x,t) puis celle de v(x,t) si une OPH est émise par le générateur. Représentations graphiques.

EXERCICES :

I Produire de la musique avec des fils d’araignée

Du fait de leurs propriétés mécaniques si particuliéres (valeur importante du module de Young, large
domaine d’élasticité et faible masse linéique), des physiciens ont récemment eu I'idée d’assembler des
milliers de fils de I’araignée Nephila pilipes, particulierement résistants, pour fabriquer des cordes de
violon.

Lorsque la corde fabriquée est utilisée pour produire du son, il convient de s’assurer que sa tension soit

bien inférieure a sa tension de rupture Tr, mais également que la corde fonctionne dans son régime
élastique. Les premiers résultats obtenus se sont révélés trés encourageants et prometteurs notamment
en ce qui concerne la qualité du timbre puisque le spectre du son produit présente de nombreux pics
d’amplitude importante a hautes fréquences.



On étudie les mouvements d’un fil d’araignée de longueur £, de masse linéique W, autour de sa position
d’équilibre. Au repos, le fil est rectiligne et paralléle a I'axe horizontal (Ox). On note z(x,t) le déplacement
du point du fil a I'abscisse x a l'instant t par rapport a sa position d’équilibre z = 0. On ne considere que les
mouvements latéraux de faible amplitude s’effectuant dans le plan Oxz (Fig. 8). Le fil étant accroché en
ses deux extrémités en deux points fixes. La tension du fil au point d’abscisse X a I'instant t est notée :

T(x,t) = Tx(x,t) &+ Ta(x 1) &
A —

(x+dx,t)
=y

z(z+dz) r"
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=) p- )
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FIGURE & — Fil horizontal subissant des déformations de faible amplitude.
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On effectue les deux hypotheses suivantes :

* La déflexion est de faible amplitude de méme que I'angle o(x,t) que fait le fil avec I'horizontale
. . < - . . d

a la position X et a I'instant t (voir Fig. 8), ce qui entraine : |£ | << 1;

* On néglige les effets de la pesanteur.

1 - On considére la portion de fil comprise entre les plans d’abscisses X et X + dx. Exprimer la longueur de
portion de fil ds, cos[a(X,t)] et sin[a(X,t)] en fonction de dx et Z—i.

En appliquant le théoréme de la résultante cinétique a cette portion de fil, montrer que Tx(x,t) ne dépend
pas de X. Que peut-on conclure pour la norme T de la tension dans le fil ?

2 - Montrer que le déplacement du fil z(x,t) vérifie alors I'équation aux dérivées partielles :

0%z 5 0%z

e c ok 0
On exprimera c en fonction de T et Y. Que représente cette grandeur physique ?
3 - Aprés avoir posé u(x,t) = x-ct et v(x,t)= x+ct, montrer que des fonctions de la forme
z(x,t) = f(x—ct) + g(x+ct) sont des solutions de cette équation. Interpréter le sens physique des fonctions f
etg.

On cherche les solutions correspondant a un régime purement sinusoidal. On utilise la représentation
complexe de ces solutions sous la forme

ol o est la pulsation du signal, k 'amplitude du vecteur d’onde, A et B des amplitudes complexes.
4 - Traduire les conditions aux limites imposées au fil en des contraintes sur z(xt).

En déduire la relation entre A et B ainsi que les valeurs de ® permises.
Comment appelle-t-on ce type d’onde et pourquoi ?



5 - Sachant que la fréquence de vibration de la note jouée (correspondant a la fréquence de la note

. 1 .
fondamentale) vaut 300 Hz, que la longueur du fil est £ = 3m et que sa masse linéique est

W =0,5 mg.m?, quelle doit étre la tension T appliquée a la corde ?

Sachant que la tension Teau-dela de laquelle la corde n’est plus dans son régime élastique est de I'ordre de
10 N, que pouvez-vous conclure ?

Dans le cadre d’'un modele plus élaboré on prend en compte la raideur du fil a travers son module de

Young E. L’équation de propagation des ondes de déformation de faible amplitude dans un fil de rayon a

devient alors :
0%z 0%z Ema*0%z
b ot T4 o
6 - Etablir la relation de dispersion donnant ®? en fonction de k et des paramétres du probléme. En
conservant I’expression de kn déterminée en 4, montrer que les fréquences propres de la corde s’écrivent

alors sous la forme :
nc
1+ Bn?

fn:ﬁ

ol B est une grandeur physique que I'on exprimera en fonctionde E, T, £ et a.

Sachant que pour la corde fabriquée a partir des fils d’araignée E = 6,0 GPa et a = 350 um et que pour une

corde classique E = 2,5 GPa et a =400 um, que pouvez-vous conclure sur la nature du son produita T et £
fixées ?

II. Ondes stationnaires sur une corde de guitare
Une corde de guitare de masse linéique u, de longueur L est fixée a ses deux extrémités. Les
frottements ainsi que le poids sont négligés et la tension est supposée constante.
1. Initialement la corde est horizontale et au repos, on I’écarte localement de sa position d’équilibre en lui
appliquant une petite déformation verticale, qui a I’abscisse x et a I’instant t, s’écrit z(x,t).
a. Donner 1’équation aux dérivées partielles a laquelle satisfait z(x,t). Exprimer la célérité c(u, T) de
I’onde de déformation sur la corde par une analyse dimensionnelle, ou T est la tension de la corde.
b. Justifier que I’on recherche une solution de cette équation sous la forme d’une fonction a variables
séparées z(x,t) = z, cos(wt + @o). cos(kx + o). Déterminer la relation liant k et .
2. a. Montrer que ® ne peut prendre qu’une série de valeurs discrétes wn. Quel nom donne-t-on a @, ?
Exprimer w, en fonction de L, n et c.
b. Exprimer zy(x,t) 1’élongation de I’harmonique de rang n. Déterminer I’expression de la longueur
d’onde A, en fonction de L.
c. Déterminer la position, ainsi que le nombre, des nceuds et des ventres dans le mode n.
d. Représenter graphiquement 1’allure de la corde dans ses trois premiers modes.
3. Une guitare ¢électrique comporte 6 cordes en acier de méme longueur L = 0,63 m et de masse volumique

= 7800 kg.m>.
N° de la corde 1 2 3 4 5 6
Fréquence du fondamental (Hz) | 82,5 | 110 | 147 | 196 | 247 | 330
Diamétre (mm) (d) 1,12 10,89 | 0,70 | 0,55 | 0,35 | 0,25

Déterminer la tension de la corde en fonction de p, d, L et de la fréquence du fondamental. AN pour que la
guitare soit accordée.

Quelle variation relative peut étre tolérée sur la tension d’une corde pour que sa fréquence fondamentale ne
varie pas de plus de 1% ?



I11.

Etude expérimentale d’un céible coaxial

Un générateur, branché a I’entrée (z = 0) d’un cable coaxial de longueur L = 100 m, délivre des
signaux périodiques de période T, de valeur Vo positive sur une durée © < T et de valeur nulle le
reste de la période.
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L’autre extrémité (z = L) du cable est refermé par une résistance R.

ATl

aide d’un oscilloscope, on observe en x = 0 la superposition de I’onde incidente délivrée par

le générateur et de I’onde réfléchie.

1.

2.

On suppose que R=0. A partir de la valeur de la tension en x = L, justifier que le coefficient
de réflexion est négatif.

En prenant en compte les phénomeénes de réflexion, d’amortissement (I’amplitude de 1’onde
réfléchie est inférieure a I’amplitude de I’onde incidente, on pose V; = KV,) et de
propagation, et sachant que le retard At di a la propagation est inférieur a T/4, dessiner sur le
méme schéma la forme de 1’onde incidente Vi(0,t) et réfléchie Vr(0,t), puis sur un autre
schéma, en concordance de temps la forme de I’onde totale Vtot(0,t) au point z = 0. Indiquer
At sur le schéma.

Par identification avec les résultats de la question précédente, sur I’oscillogramme ci-dessoue,
indiquer la valeur V =0, la valeur V = Vo, la valeur V = V; ainsi que At. Déterminer une
valeur approchée de la vitesse de propagation le long du cable.

- VT - -

-

4.

Evaluer le coefficient d’amortissement K.



On suppose que le coefficient K ne dépend pas de la valeur de R.

5. A partir des oscillogrammes ci-dessous, définir et déterminer la valeur du coefficient de
réflexion de I’onde en x = L pour différentes valeurs de R. En déduire la valeur
caractéristique de R, pour laquelle le coefficient de réflexion est nul.
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