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Thème : ondes sonores  
APPLICATIONS DIRECTES 

1. Célérité des ondes sonores 
On étudie des ondes sonores planes dans l’air de masse volumique au repos o  
Dans un plan (P) d’abscisse x, la pression totale PT peut se mettre sous la forme  

 .t,xpPP ST   PS  est la pression statique et p(x,t) est la surpression acoustique, solution  

de l’équation :  
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1) Quelles sont les hypothèses du modèle qui permet d’obtenir cette équation.  
2) a) Que représente la grandeur c ? 
 b) Pourquoi le coefficient   intervient-il ? 
 c) Déterminer l’expression de c en fonction de la température absolue T pour un gaz 
parfait de masse molaire M. 
3) Pour l’air assimilé à un gaz parfait, M = 29 g.mol1, 
 a) Comment obtient-on la valeur numérique de M ? 
 b) Calculer numériquement c à   = 18° C. Comparer cette vitesse à celle du son dans 
un solide ou un liquide. On prendra pour R, constante des gaz parfaits, 
R J mol K  8 32 1 1, .   et  pour  , égal  à   cp / cv ,    7 5/ . 
 

2. Equation de propagation d’une onde sonore, impédance d’un milieu 
L’onde acoustique correspond à une vibration des molécules d’air autour de leurs positions 
moyennes. On appelle u(x,t) la vitesse correspondante. Les grandeurs p(x,t) et u(x,t) sont  

liées par la relation : 
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1) Quelle est l’origine de cette équation ?  
2) Pour une OPH se propageant dans le sens x croissant, donner l’expressions complexes de p(x,t) 
selon que l’onde se propage dans le sens x croissant ou x décroissant. 
3) A l’aide de la relation linéaire (1) déterminer u(x,t) selon que l’onde se propage dans le sens x 
croissant ou x décroissant. (Rappel : les valeurs moyennes de p(x,t) et u(x,t) sont nulles) 

4) Pour une OPH, on définit l’impédance acoustique 𝑍 =
௣

௨
. Exprimer Z selon que l’onde se propage 

dans le sens x croissant ou x décroissant en fonction de et c. Que signifie, quant au déphasage de 
p(x,t) par rapport à u(x,t), le fait que Z soit réel ? 
 
 3. Solutions de l’équation d’onde 
La solution complète de l’équation de propagation du son dans l’air peut écrire p(x,t), surpression 

sonore, sous la forme (en notation complexe) :        .,
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 1) Quelle est la signification de chacun des termes  kxtj
1
ep      ?
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kxtjepet   

 2) Soit u(x,t) le champ des vitesses de l’air. Déterminer l’expression de u1(x,t), en fonction de Z, 

impédance acoustique du milieu, et  kxtj
1
ep  puis celle de u2(x,t) en fonction de Z  et   ?
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En déduire u(x,t). 
3) On considère que l’onde précédente est émise de -∞ et arrive en x = 0, où se trouve un obstacle 
indéformable.   
 a) Que vaut u(x=0,t) ?  En réduire une relation entre u1 et u2, puis entre p1 et p2 et exprimer u(x,t) 
en fonction de p1, et k. 
 b) Justifier l’apparition d’un système d’ondes stationnaires.  
 c) On pose p1 = po grandeur réelle.  Déterminer l’expression réelle de u(x,t).  



 d) En déduire la position des nœuds de vitesse. 
 e) En déduire l’expression de p(x,t). Déterminer la position des nœuds de pression. Quelle relation 
lie les nœuds de pression et les nœuds de vitesse ? 
 

4. Puissance sonore 
Sur le chemin d’une onde sonore plane sinusoïdale et progressive, se propageant dans l’air, se 
trouve un disque de contrôle de rayon a = 50 cm dont le plan est perpendiculaire à la direction de 
propagation. La longueur d’onde sonore est  = 5,0 cm ; la fréquence f = 6,8 kHz. L’amplitude de la 
surpression est po = 3,5 Pa.  

1. Déterminer la vitesse de propagation de cette onde. Commentaire ? 
2. Donner l’expression de p(x,t). 
3. Quelle relation lie p(x,t) et v(x,t), vitesse de la particule fluide ? En déduire l’expression de 

v(x,t). 
4. Donner l’expression de P (x,t) puissance sonore qui traverse le disque. En déduire la valeur 

moyenne de la puissance sonore traversant la surface du disque. AN. 
5. Evaluer l’intensité sonore en dB de cette onde. Commenter cette valeur. 

 
EXERCICES 
I. Intensité sonore 
1. Deux ondes sonores, dont l’une a une fréquence égale au double de l’autre, ont des amplitudes de 
déplacement égales. On rappelle que la vitesse de la particule fluide v(x,t) est la dérivée temporelle 
du déplacement, noté (x,t)ksi. Laquelle de ces deux ondes correspond à la surpression de plus 
grande amplitude ? Dans quel rapport ? Quel est le rapport de leur puissance surfacique ? Quelle est 
la différence de leur intensité sonore en dB ? 
2. Si l’intensité d’une onde sonore est triplée, de combien de décibels l’intensité sonore augmente-t-
elle ? 
3. Quelle est l’intensité sonore en décibels d’une onde sonore se propageant dans l’air pour laquelle 
l’amplitude de déplacement des particules de fluide est 0,1 mm à 180 Hz ? 
4. Si deux pétards qui explosent en même temps produisent une intensité sonore de 90 dB, quelle 
serait l’intensité sonore si un seul des deux pétards explosait ? 
 
II. Ordres de grandeur en acoustique 
On considère une source sonore d’intensité 60 dB et de fréquence 1000 Hz dans l’air à o = 20°C. 
Calculer numériquement : 
La surpression acoustique efficace peff, la vitesse particulaire efficace ueff, le déplacement 
particulaire efficace eff, l’écart de la température acoustique efficace Teff = Teff – To. Commenter 
les applications numériques précédentes et en particulier conclure quant à la validité de 
l’approximation acoustique. 
 
III. Détermination expérimentale de la célérité des ondes acoustiques  
On considère un tuyau horizontal, cylindrique, d’axe Ox, de section S, rempli d’air assimilé à un 
gaz parfait de masse molaire M, de masse volumique 0  dans les conditions de l’expérience, à la 
température   18 C et dans un état non perturbé. La longueur du tuyau est L = 1,45 m. A l’une 
des extrémités (x=L) est placé un haut-parleur associé à un générateur basse fréquence. L’ensemble 
délivre un signal sinusoïdal. A l’autre extrémité (x=0) l’expérimentateur place une plaque 
métallique rigide en aluminium. Un microphone mobile, relié à un millivoltmètre, peut se déplacer 
à l’intérieur du tuyau et ne perturbe pas les phénomènes étudiés. Une règle graduée permet de 
déterminer sa position. On suppose que les grandeurs vibratoires ne dépendent que de x et de t. 



 
  Le microphone délivre une tension V proportionnelle à la racine carrée de la valeur moyenne au 

carré de la pression acoustique soit V = K   2
1

2 t,xp  .  
1) Quelle condition sur u vitesse particulaire, l’obstacle, supposé parfaitement rigide, impose-t-il en 
x = 0 ? Que peut-on en déduire de la nature l’onde sonore de vitesse u(x, t) ? En déduire l’expression 
de u(x, t). 
2) Quelle est alors l’expression de p(x,t) ? En déduire l’expression de V(x). 
3) L’expérimentateur relève la position x1 du premier minimum de tension rencontré à partir de x = 
0 ainsi que celle xi  du i ième pour trois fréquences différentes. Il remarque au passage que les 
valeurs lues sur le voltmètre pour ces minima sont quasi-nulles. 
 

f en Hz x1 en cm xi en cm i 

300 32,0 89,0 2 

500 17,7 120,0 4 

988 8,0 112,0 7 
 
Calculer pour chacune des fréquences les valeurs de la longueur d’onde  , de la célérité c des 
ondes acoustiques dans le tuyau et celle de cp /cv = Commenter.  
4) Le microphone étant en x = 0, l’expérimentateur remarque, que les indications du voltmètre 
passent par des valeurs maximales beaucoup plus importantes pour certaines fréquences dont il 
relève quelques valeurs : 355 Hz, 472 Hz, 590 Hz. Expliquer ces résultats. Y-a-t-il contradiction 
avec le fait que c’est le déplacement de la membrane qui génère les ondes ? 
 
IV. Isolation phonique 
 Pour étudier l'atténuation sonore introduite par un mur, on adopte le modèle sommaire suivant : 
dans un tuyau de section S, une onde sonore incidente plane progressive harmonique de pulsation  
arrive sur un piston de surface S, d'épaisseur e et de masse volumique µ, libre de se déplacer au voisinage 
de x = 0. On cherche un champ des vitesses de la forme :  

v 1 (x<0,t) = A1 exp(jt - jkx) + B1 exp(jt + jkx)   ;    v2(x>e,t) = A2 exp(jt - jkx+jke)  
1.Justifier cette forme et écrire les surpressions p1(x,t) et p2(x,t) correspondantes. 
2. Ecrire les conditions aux limites sur la vitesse vp du piston indéformable, donner une relation 
entre vp et A1 et B1. 
3. En appliquant le pfd au piston, déterminer une relation entre les surpressions au niveau du 
piston et la dérivée temporelle de vp. En déduire que 
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  où µo
 masse volumique de l'air. 

3. Caractériser et commenter le rapport précédent 

4. Définir le coefficient de transmission en puissance du mur, et l’exprimer en fonction 
|஺మ|

஺భ
.  

On donne µo = 1,3 kg.m-3, µ = 2.103 kg.m-3 et c = 340 m.s-1  



5. Quelle doit-être l'épaisseur minimale du mur si on veut une atténuation en puissance d'au 
moins - 40 dB pour f = 1 kHz. Et pour f = 100 Hz ? 

 
V. Echolocation du dauphin 
Les dauphins et leurs cousins cétacés ont développé une 
utilisation très particulière des ondes sonores : l’écholocation. 
Le principe est exactement le même que celui du sonar, utilisé 
par les hommes pour la localisation sous-marine : il s’agit 
d’émettre un signal sonore en direction d’une cible (une proie 
ou un obstacle) et d’en capter l’écho pour en déduire des 
informations sur cette cible. 
La célérité des ondes sonores dans l’eau est c=1500 m/s. Les 
trains d’onde émis par les dauphins pour l’écholocation ont une fréquence moyenne de f0=75 kHz et une 
durée moyenne Δt=100 µs.  

1. Déterminer la longueur d’onde λ0 des clics ainsi que leur étendue spatiale Δx.  
2. Pour une cible située à 100 m, évaluer la précision relative sur la durée d’un aller-retour de 

l’onde sonore.  
3. Le signal réfléchi est d’amplitude plus faible que le signal émis. Pour quelles raisons ? 
4. Si le poisson s’éloigne, la fréquence du signal reçu est-elle plus grande, plus petite, ou égale à la 

fréquence du signal émis ? Comment se nomme cet effet ? 
Les ondes sonores peuvent également permettre à certaines espèces de localiser des proies cachées sous le 
sable. 
Les coefficients de réflexion R et de transmission T en énergie entre deux milieux ont pour expression 
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R   où Z1 et Z2 sont les impédances acoustiques des milieux 1 et 2.  

5. Un dauphin émet un clic d’intensité acoustique I₀. Déterminer 
l’intensité de l’écho sur le poisson parvenant au dauphin en fonction des 
impédances de l’eau, du sable et du poisson, respectivement notées Ze, Zs, et 
Zp. 
 
 
 
 
 


