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Thème : Electrostatique 
Applications directes : 

1. Atome de Bohr 
L’atome de Bohr est une représentation de l’atome d’Hydrogène, consitué d’un proton et d’un électron. 

a) Donner les charges électriques de ces deux particules. 
b) Calculer la valeur numérique du champ électrostatique produit par un proton à une distance de 

a= 53pm, appelée rayon de Bohr.  
c) Représentez la force subie par l’électron de l’atome d’hydrogène dont la probabilité de présence 

maximale se trouve sur le rayon de Bohr. Déterminer la valeur de cette force.  
Dans le modèle de Bohr, on suppose que l’électron est animé d’un mouvement circulaire uniforme 
autour du proton.  

d) Exprimer l’accéleration de l’électron en coordonnées polaires. En déduire la vitesse de 
l’électron sur sa trajectoire, sachant que la masse d’un électron est de 9,0.10-31kg. 
 
2. Champs et forces électrostatiques 

Soient deux charges Q et Q’ respectivement en M et M’, deux points distants de d. 
1. Comparer les normes des champs électrostatiques auxquels sont soumises respectivement les 

charges Q et Q’. 
2. Même questions pour les forces subies par Q et Q’. 
3. On suppose que Q’ = - 3Q. Tracer l’allure des lignes du champ électrostatique, un tube de champ 

et préciser dans ce tube les régions où le champ est plus intense. (On pourra s’aider d’un logiciel) 
existe-t-il un endroit où le champ est nul ? Déterminer son abscisse sur l’axe QQ’. 

 
3. Plan de symétrie et d’antisymétrie 
1. Déterminer la position de M’, symétrique de M par rapport au plan 

 
2. Tracer le champ électrostatique en M’ si  est un plan de symétrie 

de la distribution de charges.  
3. Tracer le champ électrostatique en M’ si  est un plan d’antisymétrie de la distribution de 

charges.  
 

4. Quadrupôle électrostatique 
On considère la distribution des 4 charges à gauche. 

a) Quels sont les trois plans de symétrie de la distribution ? 
b) Quels sont les deux plans d’antisymétrie de la 
distribution ?  
 

5. Superposition et symétries 
Sur le schéma ci-contre figurent, en M1 et M2, les champs 

électrostatiques 𝐸ሬ⃗ 1 et 𝐸ሬ⃗ 2 respectivement générés par les deux 
charges q1 = +e et q2 = +e. 

a) Exprimer le champ électrostatique total 𝐸ሬ⃗  au point M1 
en fonction des vecteurs de la base. 

b) Exprimer le champ électrostatique total 𝐸ሬ⃗  au point M2 
en fonction des vecteurs de la base. 

Le plan (M2, 𝑒y, 𝑒z), nommé P, est un plan de symétrie de la 
distribution de charge. 



M E(M) 



c) Quelles propositions sont correctes ? 
 

 
 

 
6. Signe d’une circulation électrostatique  

Les lignes du champ électrostatique 𝐸ሬ⃗  produit par une charge ponctuelle q 
négative convergent vers cette charge. Pour chaque chemin orienté, indiquer si la 
circulation C du vecteur champ électrique est positive, négative ou nulle : A  B ; B 
C ; C D ;  D A 
 

7. Electrisation du sol 
Lors d’un orage peut se développer au niveau du sol une zone chargée. On a tracé les équipotentielles 
au niveau d’une aspérité. Celle-ci est supposée conductrice donc sa surface est une équipotentielle. 
L’unité de longueur choisie ici est celle du rayon de la sphère R = 1m. 

 
a) Représenter l’allure de quelques lignes de champ. 
b) Quel est le signe de la charge portée par l’aspérité ? 
c) Dans quelles régions le champ est-il le plus intense ? 
d) Evaluer sa valeur au sommet de l’aspérité. 
e) La valeur du champ disruptif de l’air est de 30 kV.cm-1. Commenter. 

 
8.  Boule creuse 

 Une boule creuse de centre O et de rayon R, porte une charge q répartie uniformément à sa surface. 
a) Déterminer le champ électrique créé en tout point de l’espace et représenter graphiquement la 

fonction trouvée. Est-ce que ce champ est continu en R ? 
b) En déduire le potentiel en tout point de l’espace et représenter graphiquement la fonction 

trouvée. 
 
 
 
 
 
 
 
 
e) Déterminer pour ce rayon la valeur de la charge portée 
alors par la sphère.  
f) Que se passe-t-il si R diminue ? Justifier le « pouvoir des 
pointes » 
 

 

c) Exprimer V(R) en fonction de E(R). 
d) Au Palais de la Découverte, une telle sphère est portée au 

potentiel Vo = 10 000 V. Quelle valeur minimale doit-on 
donner au rayon de la sphère si la valeur du champ sur la 
sphère doit rester inférieure au champ disruptif de l’air Ed = 
3.106 V.m-1 ?  
Si le champ sur la sphère devient supérieur au champ disruptif 
de l’air une étincelle se produit et la sphère se décharge. 

 
V = - 1,5 kV 
 
 
V = - 1,0 kV 
 
V = - 0,5 kV 
 
V = - 0,3 kV 
 
V = 0 



9. Analogies entre champs électrique et gravitationnel 
a) Soit deux particules de charges q et q’ repectivement en M et M’. Exprimer la loi de Coulomb 

entre ces deux particules. Donner le nom, la valeur et l’unité de la constante qui intervient dans 
cette expression. 

b) Soit deux particules de masser m et m’, respectivement en M et M’. Exprimer la force 
gravitationnelle qui s’exerce entre ces deux particules. Donner le nom, la valeur et l’unité de la 
constante qui intervient dans cette expression. 

c) Dresser un tableau d’analogies entre les deux situations précédentes. 
d) Enoncer le théorème de Gauss. 
e) A partir du tableau d’analogies, énoncer le théorème de Gauss gravitationnel. 
f) On assimile la terre à une sphère de masse uniforme. Déterminer le champ gravitationnel créé 

par la terre en tout point de l’espace. Représentation graphique. 
 

10. Energie potentielle d’une particule chargée dans un champ électrique  
a) Rappeler la définition de l’énergie potentielle d’un système soumis à une force 

conservative. 
b) Montrer que l’énergie potentielle d’une particule de charge q placée dans un champ 

électrique s’écrit Ep = qV + const, où V est le potentiel électrique.  
c) Enoncer le théorème de l’énergie cinétique lorsque la particule précédente n’est soumise 

qu’à la force électrique. 
Un électron de masse m, de vitesse initiale nulle, est accéléré dans le vide par un champ 
électrostatique uniforme E.  
d) Proposer un dispositif expérimental qui permet de fabriquer un champ électrostatique 

uniforme. Quel nom donne-t-on à ce dispositif ? 
On note U la différence de potentiel entre la position initiale et la position où la vitesse acquise 
est v. Exprimer v en fonction des données. 
e) Déterminer la valeur de Ulim telle que la vitesse de l’électron soit inférieure à10% de la valeur 
maximale autorisée. 
 

EXERCICES : 
I Fonctionnement du coeur  
Le coeur est un muscle qui se contracte de façon régulière. Cette contraction des muscles lui permet 
d’assurer la circulation sanguine dans tout le corps. On distingue deux types de tissus dans le coeur : le 
tissu nodal, responsable de l’élaboration et de la conduction de l’influx (activité électrique), et le tissu 
myocardique responsable de la contraction après stimulation par le tissu nodal. 
On considère deux charges fixes positionnées sur un axe (𝑂𝑥) : une charge −𝑞 < 0 au point 𝐴 d’abscisse 
𝑥 = −𝑎 et une charge 𝑞 > 0 au point 𝐵 d’abscisse 𝑥 = 𝑎.  

1. Déterminer le vecteur champ électrostatique 𝐸ሬ⃗  et le potentiel électrostatique 𝑉 au point 𝑂, 
milieu de [𝐴𝐵].  

Un dipôle électrique est constitué de deux charges −𝑞 
située en 𝐴 et +𝑞 située en 𝐵 ; on lui associe un moment 
dipolaire électrique 𝑝 = 𝑞 𝐴𝐵ሬሬሬሬሬ⃗ , de norme 𝑝 = 𝑞𝑑 avec 𝑑 = 
𝐴𝐵. On repère un point 𝑀 quelconque de l’espace par 𝑟 = 
𝑂𝑀ሬሬሬሬሬሬ⃗  avec 𝑂 le milieu de [𝐴𝐵]. En coordonnées sphériques 
et à grande distance des deux charges, c’est-à-dire pour 𝑟 
= 𝑂𝑀 ≫ 𝑑, on montre que le potentiel électrostatique 𝑉 

au point 𝑀 s’écrit V = 
௣௖௢௦ఏ

ସగఌ೚௥మ = 
௣⃗∙௥⃗

ସగఌ೚௥య. 

Ce potentiel électrostatique est associé à un champ 
électrostatique 𝐸ሬ⃗ . 

2. Déterminer les expressions des composantes 𝐸𝑟 et 𝐸𝜃 du champ électrostatique 𝐸ሬ⃗  à grande 
distance des deux charges (𝑟 ≫ 𝑑).  



3. Quelle relation a-t-on entre l’angle 𝜃 et l’angle 𝛼 que fait le champ 𝐸ሬ⃗  avec l’axe (𝑂𝑀) ?  
4. Déterminer et dessiner le champ 𝐸ሬ⃗  pour 𝜃 = 0 et 𝜃 = 𝜋/2.  

L’enregistrement de l’activité cardiaque électrique au cours du temps est 
réalisé en mesurant une différence de potentiel entre deux points du 
corps. On appelle dérivation un système de deux électrodes 
exploratrices entre lesquelles on mesure une différence de potentiel. 
Dans l’étude des dérivations dites périphériques (ou des membres) les 
électrodes sont placées soit au poignet droit (point 𝑅) de potentiel 𝑉𝑅, 
soit au poignet gauche (point 𝐿) de potentiel 𝑉𝐿, soit à la jambe gauche 
(point 𝐹) de potentiel 𝑉𝐹 . Par hypothèse, les points 𝑅, 𝐿 et 𝐹 sont aux 
sommets d’un triangle équilatéral (figure 5). On définit enfin une 
électrode de référence au potentiel 𝑉𝑊 constant dont on précise les 
caractéristiques ci-après. Une dérivation unipolaire correspond à une 
différence de potentiel entre une électrode exploratrice et l’électrode de 
référence alors qu’une dérivation bipolaire correspond à une différence 
de potentiel entre deux électrodes exploratrices.  

5. Combien peut-on construire de dérivation unipolaire ? de dérivation bipolaire ?  
6. Quel intérêt y a-t-il à associer ces deux types de dérivations ? 

La théorie d’Einthoven permet d’expliquer les tracés observés dans les dérivations périphériques 
(enregistrement à grande distance du coeur).  
— Hypothèse 1 : à chaque moment du cycle cardiaque le coeur est assimilable à un dipôle électrique 
dont le vecteur moment dipolaire 𝑝 varie en module, direction et sens au cours du cycle cardiaque.  
— Hypothèse 2 : l’origine de 𝑝⃗ peut être considérée comme fixe et correspond au centre électrique 𝑂 
du coeur.  
— Hypothèse 3 : le centre de gravité du triangle équilatéral formé par 𝑅, 𝐿 et 𝐹 est occupé par le centre 
électrique 𝑂 du cœur.  

7. À l’aide de l’expression du potentiel créé par un dipôle donnée précédemment, exprimer les 
trois potentiels 𝑉𝑅, 𝑉𝐿 et 𝑉𝐹 en fonction, notamment, des distances 𝑟𝑅 = 𝑂𝑅, 𝑟𝐿 = 𝑂𝐿 et 𝑟𝐹 = 𝑂𝐹. 
On n’introduira pas de variables angulaires.  

8. Qu’imposent les hypothèses 2 et 3 pour le calcul précédent ?  
9. En déduire la possibilité de définir par le calcul une électrode de référence de potentiel 𝑉𝑊 nul. 

On parle alors de borne centrale de Wilson. En pratique comment réaliser cette borne de Wilson ? 
 
II. Distribution linéïque 

On considère une droite Oz chargée avec une densité uniforme linéïque .  
1. Définir et donner les unités de  
2. Déterminer les éléments de symétrie de cette distribution. Que peut-on en déduire quant au 

champ créé par cette distribution ? 
3. Tracer une surface de Gauss adaptée. 
4. Déterminer le champ électrique créé par cette distribution en tout point de l’espace et en faire 

une représentation graphique. 
5. Mêmes questions pour le potentiel. 

 
III. Champ électrique dans une cavité 
1. Calculer le champ électrique créé par une sphère uniformément chargée en volume de centre O, 

de rayon R en tout point de l’espace. Représenter graphiquement ce champ. 
2. Exprimer le champ en un point M à l’intérieur de la cavité en fonction du vecteur 𝑂𝑀ሬሬሬሬሬሬ⃗ . Représenter 

ce champ. 
A l’intérieur de cette sphère on creuse une cavité sphérique de centre O’ et de rayon R’. (R’ forcément 
inférieur à R !). Il n’y a pas de charges à l’intérieur de cette cavité. 

3. Justifier que l’application directe du théorème de Gauss pour le calcul du champ électrique en un 
point M de la cavité est impossible.  



4. En remarquant que la cavité vide de charges peut être modélisée par la superposition d’une sphère 
uniformémént chargée de charge + Q et d’une sphère uniformément chargée de charge – Q, représenter 
en M à l’intérieur de la cavité les chalmps créés par chacune des deux sphères. Déterminer le champ en 
M et montrer qu’il y est uniforme. 

 
IV. La structure interne de Jupiter 
On notera G = 6,67.10-11 SI la constante de la gravitation universelle. On 

s’intéresse au champ gravitationnel  𝐺⃗ (P) créé en P par une distribution de 
masse.  
Une distribution de masse volumique µ crée un champ gravitationnel 𝐺 ሬሬሬ⃗  qui 
satisfait les équations locales suivantes : div𝐺⃗ = -4µ G et 𝑟𝑜𝑡ሬሬሬሬሬሬ⃗  𝐺⃗ =  0ሬ⃗  
1. Comment s’exprime la force de gravitation exercée par une distribution de masse sur un point 

matériel P de masse m en fonction du champ de gravitation 𝐺⃗ (P) ?  
2. Dresser une analogie entre les équations de l’énoncé et celles de l’électrostatique. Quelle est la 

différence fondamentale entre l’électrostatique et la gravitation ?  
3. Le potentiel gravitationnel Φ est pour 𝐺⃗ l’analogue de ce qu’est le potentiel électrostatique V 

pour le champ électrostatique. Laquelle des deux équations de l’énoncé permet d’assurer 
l’existence d’un potentiel gravitationnel Φ pour le champ de gravitation 𝐺⃗ ? Écrire l’équation 
existant entre Φ et 𝐺⃗, au signe près. En déduire que le potentiel gravitationnel satisfait 
l’équation de Poisson et préciser alors le choix du signe effectué : 4µ G. 

4. Énoncer le théorème de Gauss liant le champ électrostatique 𝐸ሬ⃗  à la distribution volumique de 
charge . En s’appuyant sur l’analogie établie entre l’électrostatique et la gravitation, exprimer 
le théorème de Gauss gravitationnel. 

 
Distribution sphérique de masse non homogène  
De manière générale, les planètes géantes possèdent :  
• un noyau d’éléments lourds ;  
• une enveloppe d’hydrogène et d’hélium ;  
• au-delà d’une pression donnée, l’hydrogène devient 
métallique. 
  
On étudie ici quelques propriétés du champ de gravitation 
d’une distribution sphérique de masse non-homogène de rayon R. On associe un système de 
coordonnées sphériques à cette distribution dont le centre O est à l’origine du système. On notera 
(𝑢௥ሬሬሬሬ⃗  , 𝑢ఏሬሬሬሬ⃗  , 𝑢ఝሬሬሬሬሬ⃗ ) la base de vecteurs associée.  
On suppose que la masse volumique µ(r ) ne dépend que de la coordonnée radiale r .  
5. Justifier très précisément que le champ de gravitation est nécessairement de la forme  
𝐺⃗(M) = − G (r) 𝑢௥ሬሬሬሬ⃗  , où G(r) est la norme du champ de gravitation.  
6. On note M (r) la masse contenue dans la boule de rayon r. Montrer alors que :  

M(r) = ∫ 4𝜋𝑟′ଶµ(𝑟ᇱ)𝑑𝑟′
௥

଴
 

7. En utilisant le théorème de Gauss pour la gravitation, déterminer dans le cas de ce modèle G (r) 
pour r > R (rayon de Jupiter). On appelle MJ la masse de Jupiter que l’on définira à l’aide de 
M(r). Tracer le graphe de G (r) pour r > R. Donner l’expression du potentiel gravitationnel Φ(r) 
dont dérive le champ de gravitation pour r > R en le prenant nul à l’infini. 

 
  



V. Mesure de charges 
On cherche à détecter, par microscopie à force électrostatique, des charges 
électriques stockées dans un isolant déposé sur un conducteur. Deux plaques 
conductrices de surface S (armatures) occupent les plans z = 0 et z = l. Les 
charges sont uniformément réparties à l’intérieur d’un volume en grisé, défini 
par 0 ≤ z ≤ h. On note  la densité volumique de charges dans cet espace. 
L’origine des potentiels électriques est choisie sur la surface conductrice 
étudiée en z = 0. Les deux surfaces conductrices sont reliées à la masse. 

a) A partir de l’équation de Poisson, déterminer les équations différentielles vérifiées par le 
potentiel dans chacune des deux régions de l’espace. 

b) Déterminer V(z). On rappelle que le potentiel et le champ sont des fonctions continues à 
l’interface d’une distribution volumique de charges. Déterminer E( l ) 

c) Représenter graphiquement V(z). On prendra h / l = 0,2. 
d) On suppose que l’armature en z = l porte une densité surfacique de charge . Le champ 

électrique au dessus de cette armature étant nul, déterminer en appliquant le théorème de Gauss, 
la valeur du champ électrique juste en dessous de cette armature, en fonction de . 

e) En déduire l’expression de  en fonction de  et des dimensions du problème. 
f) Quelle est l’expression de la force subie par l’électrode supérieure ? Quel peut-être le principe 

de la mesure de la charge q présente au voisinage de la surface z = 0 ?  
 
VI. Influence de la main dans le Thérémine 
Le thérémine est un boitier électronique avec deux antennes qui 
produit de la musique sans que l’instrumentiste ne touche 
l’instrument. Une antenne verticale est dite antenne de tonalité ou 
pitch car on commande la hauteur de la note en faisant varier la 
distance de la main droite à l’antenne verticale. L’antenne horizontale 
en forme de boucle est utilisée pour faire varier l’intensité du son 
selon la position de la main gauche. La sortie du son, proche de celui 
d’une scie musicale, se fait par un haut-parleur. Cet instrument exige 
de l’instrumentiste une grande précision des mouvements de ses 
mains et une quasi-immobilité du reste du corps : la note juste est 
difficile à atteindre. Les morceaux joués sont lents. 
En première approche, on utilise le modèle suivant : 
- L’antenne constitue l’armature 1 d’un condensateur plan de potentiel V1 et de surface S1 
- L’autre armature, de potentiel nul est constituée par : 

 Le corps immobile de l’instrumentiste à la distance d de l’armature 1, 
La main droite « en avant du corps », à la distance x de l’armature 1, modélisée par une 
surface plane s << S. S est l’aire totale des armatures en regard. 

 
1. Rappeler l’expression de la capacité d’un condensateur plan. 
2. Rappeler la méthode d’obtention de cette relation. 
3. Par quelle association (série ou parallèle) peut-on modéliser le corps et la main droite de 

l’instrumentiste ? En déduire l’expression de la capacité C de l’ensemble, en fonction de o, S, 
s, x et d. 

L’instrumentiste déplace très légèrement la main d’une quantité dx petite devant (x-d). Exprimer la 
nouvelle capacité de l’ensemble.  



4. Quelle est la variation dC de la capacité au premier ordre en fonction de ε0, s, dx, et x ?  
o =8,85.10-12 F.m-1. Faire l’application numérique pour s = 100 cm2, x = 20 cm et dx = 0,5cm. 
Commenter.  

 
VII. Condensateur sphérique  
On considère un système électrique en deux parties, 
appelées armatures : une boule de rayon a qui est chargée 
positivement dans tout son volume, et dont la charge 
électrique totale est +Q; ainsi qu’une sphère creuse qui 
l’entoure, de rayon b > a, et qui est chargée électriquement 
en surface, et dont la charge électrique totale est−Q. Les 
deux parties sont séparées par du vide. 
1. Déterminer l’expression de la densité volumique de charge  dans la boule de rayon a, en fonction de 
Q. 
2. Déterminer l’expression de la densité surfacique de charge  sur la sphère de rayon b en fonction de 
Q. 
3. Déterminer l’expression du champ électrique dans les trois zones de l’espace r < a, a < r < b, et r > b. 
Tracer graphiquement la fonction E(r). 
4. En déduire le potentiel électrique V(r) entre les deux armatures de ce système. 
5. En déduire alors l’expression de la capacité C de ce condensateur. 
 
VIII. Électron accéléré et champ magnétostatique 

Dans un canon de microscope électronique, un électron 𝐴 (masse 𝑚௘, charge électrique −𝑒) est 
émis, avec une vitesse initiale négligeable, le long d’un axe 𝑂𝑥, par une plaque métallique 𝒫ଵ portée à 
un potentiel nul. Cet électron est accéléré, dans le vide, grâce à 
une grille métallique 𝒫ଶ portée à un potentiel constant 
 𝑉௔ = 100 V. Les plaques 𝒫ଵ et 𝒫ଶ sont habituellement appelées 
cathode et anode, respectivement.  
1. Exprimer la vitesse 𝑣 de 𝐴 lorsqu’il atteint l’anode en 

fonction des données. 
2. Calculer 𝑣. On indique les valeurs approximatives des 

constantes fondamentales suivantes :   
𝑚௘ ≈ 9 × 10ିଷଵ kg et  𝑒 ≈ 1,6.10ିଵଽ C. 

3. Une fois la vitesse 𝑣 acquise, on s’arrange à la sortie (non 
représentée sur la figure) du canon pour que l’électron 
pénètre dans une région où règne seulement un champ magnétique 𝐵ሬ⃗ , stationnaire et uniforme, dont 
la direction est perpendiculaire à la direction de la vitesse incidente de l’électron. Que dire quant à la 
trajectoire de l’électron dans cette région ? 
A) L’électron n’est pas dévié et suit donc une trajectoire rectiligne. 
B) La trajectoire de l’électron est une parabole. 
C) La trajectoire de l’électron est circulaire de rayon proportionnel à 𝐵. 

D) La trajectoire de l’électron est circulaire de rayon proportionnel à 
ඥ௏ೌ

஻
. 

4. Lorsque l’électron quitte la région où règne le champ magnétique, que peut-on dire de son vecteur 
vitesse 𝑣௦ሬሬሬ⃗  et de sa trajectoire (on négligera l’influence du poids) ? 
A) Le vecteur 𝑣௦ሬሬሬ⃗  possède une norme égale à 6 × 10଺ m. sିଵ. 
B) Le vecteur 𝑣௦ሬሬሬ⃗  a la même direction que lorsque l’électron est rentré dans la région du champ 
magnétique. 
C) La trajectoire de l’électron est toujours circulaire. 
D) La trajectoire de l’électron est rectiligne. 
 



5. On s’intéresse à l’angle 𝜃௠, dit de déflexion magnétique, que forme la direction de 𝑣௦ሬሬሬ⃗  avec l’axe 𝑂𝑥 

lorsque 𝐴 sort de la région du champ magnétique. Cet angle est 𝜃௠ = ට
௘

ଶ௠೐௏ೌ
𝐵𝐿ఈ 

où 𝛼 est un nombre réel et 𝐿 une longueur ; précisément, 𝐿 est la longueur de la trajectoire de 
l’électron dans la région du champ magnétique. À l’aide d’une analyse dimensionnelle, déterminer 
𝛼. 


