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Theme : Electrostatique

Applications directes :
1. Atome de Bohr
L’atome de Bohr est une représentation de 1’atome d’Hydrogene, consitué d’un proton et d’un électron.
a) Donner les charges ¢€lectriques de ces deux particules.
b) Calculer la valeur numérique du champ électrostatique produit par un proton a une distance de
a= 53pm, appelée rayon de Bohr.
c) Représentez la force subie par 1’¢électron de I’atome d’hydrogene dont la probabilité de présence
maximale se trouve sur le rayon de Bohr. Déterminer la valeur de cette force.
Dans le modele de Bohr, on suppose que I’¢lectron est animé d’un mouvement circulaire uniforme
autour du proton.
d) Exprimer ’accéleration de I’électron en coordonnées polaires. En déduire la vitesse de
I’électron sur sa trajectoire, sachant que la masse d’un électron est de 9,0.10°'kg.

2. Champs et forces électrostatiques
Soient deux charges Q et Q’ respectivement en M et M’, deux points distants de d.

1. Comparer les normes des champs ¢€lectrostatiques auxquels sont soumises respectivement les
charges Qet Q’.

2. Méme questions pour les forces subies par Q et Q’.

3. On suppose que Q’ =- 3Q. Tracer I’allure des lignes du champ électrostatique, un tube de champ
et préciser dans ce tube les régions ou le champ est plus intense. (On pourra s’aider d’un logiciel)
existe-t-il un endroit ou le champ est nul ? Déterminer son abscisse sur I’axe QQ’.

Plan de symétrie et d’antisymétrie /
Déterminer la position de M’, symétrique de M par rapport au plan M E(M)
IT.

2. Tracer le champ électrostatique en M’ si IT est un plan de symétrie

de la distribution de charges.

3. Tracer le champ électrostatique en M’ si I1 est un plan d’antisymétrie de la distribution de
charges.
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4. Quadrupdole électrostatique

[ o On considere la distribution des 4 charges a gauche.

4 L__ . a) Quels sont les trois plans de symétrie de la distribution ?
Ez Ex

b) Quels sont les deux plans d’antisymétrie de la

@  distribution ?

5. Superposition et symétries | 4
Sur le schéma ci-contre figurent, en M1 et M2, les champs N Mo

¢lectrostatiques E\ et E> respectivement générés par les deux
charges g1 =+e et g2 = +e.

a) Exprimer le champ électrostatique total E au point M;
en fonction des vecteurs de la base.
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b) Exprimer le champ électrostatique total E au point M»

en fonction des vecteurs de la base.

Le plan (M, €,, €-), nommé P, est un plan de symétrie de la
distribution de charge.




¢) Quelles propositions sont correctes ?
(@) E(Ms) = —2¢; + 8¢, (©) EMa) € P
(B) E(Ms) = 22; + 85 (@ EMz) LP

6. Signe d’une circulation électrostatique

Les lignes du champ électrostatique E produit par une charge ponctuelle ¢
négative convergent vers cette charge. Pour chaque chemin orienté, indiquer si la
circulation C du vecteur champ électrique est positive, négative ounulle : A - B ; B—>
C;C>D; D>A

7. Electrisation du sol
Lors d’un orage peut se développer au niveau du sol une zone chargée. On a tracé les équipotentielles
au niveau d’une aspérité. Celle-ci est supposée conductrice donc sa surface est une équipotentielle.
L’unité de longueur choisie ici est celle du rayon de la sphere R = 1m.
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a) Représenter 1’allure de quelques lignes de champ.

b) Quel est le signe de la charge portée par I’aspérité ?

c¢) Dans quelles régions le champ est-il le plus intense ?

d) Evaluer sa valeur au sommet de ’aspérité.

e) La valeur du champ disruptif de I’air est de 30 kV.cm™'. Commenter.

8. Boule creuse
Une boule creuse de centre O et de rayon R, porte une charge q répartie uniformément a sa surface.
a) Déterminer le champ électrique créé en tout point de I’espace et représenter graphiquement la
fonction trouvée. Est-ce que ce champ est continu en R ?
b) En déduire le potentiel en tout point de 1’espace et représenter graphiquement la fonction

trouvée. c¢) Exprimer V(R) en fonction de E(R).

d) Au Palais de la Découverte, une telle sphére est portée au
potentiel Vo =10 000 V. Quelle valeur minimale doit-on

donner au rayon de la sphere si la valeur du champ sur la

sphere doit rester inférieure au champ disruptif de 1’air Ed =

3.10°V.m!?

Si le champ sur la sphére devient supérieur au champ disruptif

de I’air une étincelle se produit et la sphere se décharge.

e) Déterminer pour ce rayon la valeur de la charge portée
alors par la sphére.

f) Que se passe-t-il si R diminue ? Justifier le « pouvoir des
pointes »



9. Analogies entre champs électrique et gravitationnel

a) Soit deux particules de charges q et q’ repectivement en M et M’. Exprimer la loi de Coulomb
entre ces deux particules. Donner le nom, la valeur et 1’unité de la constante qui intervient dans
cette expression.

b) Soit deux particules de masser m et m’, respectivement en M et M’. Exprimer la force
gravitationnelle qui s’exerce entre ces deux particules. Donner le nom, la valeur et I’'unité de la
constante qui intervient dans cette expression.

c) Dresser un tableau d’analogies entre les deux situations précédentes.

d) Enoncer le théoréme de Gauss.

e) A partir du tableau d’analogies, énoncer le théoréme de Gauss gravitationnel.

f) On assimile la terre a une sphere de masse uniforme. Déterminer le champ gravitationnel créé
par la terre en tout point de I’espace. Représentation graphique.

10. Energie potentielle d’une particule chargée dans un champ électrique

a) Rappeler la définition de 1’énergie potentielle d’un systéme soumis a une force
conservative.

b) Montrer que 1’énergie potentielle d’une particule de charge q placée dans un champ
¢lectrique s’écrit Ep = qV + const, ou V est le potentiel électrique.

¢) Enoncer le théoréme de 1’énergie cinétique lorsque la particule précédente n’est soumise
qu’a la force électrique.

Un ¢électron de masse m, de vitesse initiale nulle, est accéléré dans le vide par un champ

¢lectrostatique uniforme E.

d) Proposer un dispositif expérimental qui permet de fabriquer un champ électrostatique
uniforme. Quel nom donne-t-on a ce dispositif ?

On note U la différence de potentiel entre la position initiale et la position ou la vitesse acquise

est v. Exprimer v en fonction des données.

e) Déterminer la valeur de Uiim telle que la vitesse de 1’électron soit inférieure a10% de la valeur

maximale autorisée.

EXERCICES :

I Fonctionnement du coeur

Le coeur est un muscle qui se contracte de fagon réguliere. Cette contraction des muscles lui permet
d’assurer la circulation sanguine dans tout le corps. On distingue deux types de tissus dans le coeur : le
tissu nodal, responsable de 1’¢laboration et de la conduction de I’influx (activité électrique), et le tissu
myocardique responsable de la contraction apres stimulation par le tissu nodal.

On considére deux charges fixes positionnées sur un axe (Ox) : une charge —q < 0 au point A d’abscisse
x =—a et une charge q > 0 au point B d’abscisse x = a.

1. Déterminer le vecteur champ électrostatique Eetle potentiel électrostatique V au point O,
milieu de [AB].

Un dipole €lectrique est constitué¢ de deux charges —¢q
située en A et +q située en B ; on lui associe un moment
dipolaire électrique p = q AB, de norme p=qdavecd =
AB. On repére un point M quelconque de I’espace par 7 =
OM avec O le milieu de [AB]. En coordonnées sphériques
et a grande distance des deux charges, c’est-a-dire pour r

= O0M > d, on montre que le potentiel électrostatique V

. . cos6 p- 1
au point M s’écrit V = d =27 =l
4mETr?  4mer3

Ce potentiel électrostatique est associé a un champ
¢lectrostatique E.

2. Déterminer les expressions des composantes Er et Eo du champ électrostatique Ea grande
distance des deux charges (r > d).

T

Figure 4 Dipale électrique et coordonnées associées



3. Quelle relation a-t-on entre 1’angle 6 et ’angle a que fait le champ E avec I’axe (OM)?

4. Déterminer et dessiner le champ E pour 8 =0 et 6 = m/2.
L’enregistrement de 1’activité cardiaque électrique au cours du temps est
réalisé en mesurant une différence de potentiel entre deux points du
corps. On appelle dérivation un systeme de deux €lectrodes
exploratrices entre lesquelles on mesure une différence de potentiel.
Dans I’étude des dérivations dites périphériques (ou des membres) les
¢lectrodes sont placées soit au poignet droit (point R) de potentiel Vg,
soit au poignet gauche (point L) de potentiel V1, soit a la jambe gauche
(point F) de potentiel Vr . Par hypothese, les points R, L et F sont aux
sommets d’un triangle équilatéral (figure 5). On définit enfin une
¢lectrode de référence au potentiel Vw constant dont on précise les
caractéristiques ci-apres. Une dérivation unipolaire correspond a une
différence de potentiel entre une électrode exploratrice et 1’¢lectrode de
référence alors qu’une dérivation bipolaire correspond a une différence
de potentiel entre deux électrodes exploratrices.

5. Combien peut-on construire de dérivation unipolaire ? de dérivation bipolaire ?

6. Quel intérét y a-t-il a associer ces deux types de dérivations ?

La théorie d’Einthoven permet d’expliquer les tracés observés dans les dérivations périphériques
(enregistrement a grande distance du coeur).

— Hypothese 1 : a chaque moment du cycle cardiaque le coeur est assimilable a un dipdle électrique
dont le vecteur moment dipolaire p varie en module, direction et sens au cours du cycle cardiaque.

— Hypothése 2 : I’origine de p peut étre considérée comme fixe et correspond au centre électrique O
du coeur.

— Hypothése 3 : le centre de gravité du triangle équilatéral formé par R, L et F est occupé par le centre
électrique O du ceeur.

7. A l’aide de I’expression du potentiel créé par un dipdle donnée précédemment, exprimer les

trois potentiels Vr, Vi et VF en fonction, notamment, des distances rr = OR, r. = OL et rr = OF.
On n’introduira pas de variables angulaires.
8. Qu’imposent les hypothéses 2 et 3 pour le calcul précédent ?
9. En déduire la possibilité de définir par le calcul une €lectrode de référence de potentiel Vw nul.
On parle alors de borne centrale de Wilson. En pratique comment réaliser cette borne de Wilson ?

Figure 5 Dérivations périphériques

II. Distribution linéique
On considéere une droite Oz chargée avec une densité uniforme linéique A.

1. Définir et donner les unités de A

2. Déterminer les éléments de symétrie de cette distribution. Que peut-on en déduire quant au
champ créé par cette distribution ?

3. Tracer une surface de Gauss adaptée.

4. Déterminer le champ ¢€lectrique créé par cette distribution en tout point de I’espace et en faire
une représentation graphique.
5. Mémes questions pour le potentiel.

III. Champ électrique dans une cavité
1. Calculer le champ électrique créé par une sphere uniformément chargée en volume de centre O,
de rayon R en tout point de I’espace. Représenter graphiquement ce champ.

2. Exprimer le champ en un point M a I’intérieur de la cavité en fonction du vecteur OM. Représenter
ce champ.
A T’intérieur de cette spheére on creuse une cavité sphérique de centre O’ et de rayon R’. (R’ forcément
inférieur a R !). [ n’y a pas de charges a I’intérieur de cette cavité.
3. Justifier que I’application directe du théoréeme de Gauss pour le calcul du champ électrique en un
point M de la cavité est impossible.




4. En remarquant que la cavité vide de charges peut étre modélisée par la superposition d’une sphere
uniformémént chargée de charge + Q et d’une sphére uniformément chargée de charge — Q, représenter
en M a ’intérieur de la cavité les chalmps créés par chacune des deux sphéeres. Déterminer le champ en
M et montrer qu’il y est uniforme.

;'.l
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IV. La structure interne de Jupiter L
On notera ¢ = 6,67.107'! SI la constante de la gravitation universelle. On g ’
s’intéresse au champ gravitationnel G (P) créé en P par une distribution de ‘:;/
masse. 0

Une distribution de masse volumique p crée un champ gravitationnel G qui

satisfait les €quations locales suivantes : divG = -“4nu g et r0tG =0

1. Comment s’exprime la force de gravitation exercée par une distribution de masse sur un point
matériel P de masse m en fonction du champ de gravitation G P)?

2. Dresser une analogie entre les équations de 1’énoncé et celles de 1’¢électrostatique. Quelle est la
différence fondamentale entre I’¢électrostatique et la gravitation ?

3. Le potentiel gravitationnel @ est pour G I’analogue de ce qu’est le potentiel électrostatique V
pour le champ électrostatique. Laquelle des deux équations de I’énoncé permet d’assurer
I’existence d’un potentiel gravitationnel ® pour le champ de gravitation G ? Berire I’équation
existant entre ® et G , au signe pres. En déduire que le potentiel gravitationnel satisfait
I’équation de Poisson et préciser alors le choix du signe effectué : AQ =4np 4.

4. Enoncer le théoréme de Gauss liant le champ électrostatique E ala distribution volumique de

charge p. En s’appuyant sur I’analogie établie entre 1’électrostatique et la gravitation, exprimer

le théoréme de Gauss gravitationnel. H, moléculaire

165 - 170K

Distribution sphérique de masse non homogéne s
o

De maniére générale, les planctes géantes possédent :
* un noyau d’éléments lourds ;

* une enveloppe d’hydrogene et d’hélium ;

* au-dela d’une pression donnée, I’hydrogeéne devient
métallique.

H conducteur

+ He Z
s glaces planéraives

+ novau silicares/fer
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4000 GPa
o . o Structure interne de Jupiter - (J. Heyvaerts -

On ¢étudie ici quelques propriétés du champ de gravitation

d’une distribution sphérique de masse non-homogene de rayon R. On associe un systeme de

coordonnées sphériques a cette distribution dont le centre O est a ’origine du systéme. On notera

(U, , ug , Uy,) la base de vecteurs associée.

On suppose que la masse volumique u(r ) ne dépend que de la coordonnée radiale r .

5. Justifier trés précisément que le champ de gravitation est nécessairement de la forme

G (M) =—G (r) u, , ou G(r) est la norme du champ de gravitation.

6. On note M (r) la masse contenue dans la boule de rayon r. Montrer alors que :

M(r) = for Arr"?u(rdr’

7. En utilisant le théoréme de Gauss pour la gravitation, déterminer dans le cas de ce mod¢le G (r)
pour r > R (rayon de Jupiter). On appelle M; la masse de Jupiter que 1’on définira a I’aide de
M(r). Tracer le graphe de G (r) pour r > R. Donner I’expression du potentiel gravitationnel ®(r)
dont dérive le champ de gravitation pour r > R en le prenant nul a I’infini.



V. Mesure de charges
On cherche a détecter, par microscopie a force électrostatique, des charges

¢lectriques stockées dans un isolant déposé sur un conducteur. Deux plaques { =
conductrices de surface S (armatures) occupent les plans z=0etz=¢ Les

charges sont uniformément réparties a 1’intérieur d’un volume en grisé, défini h

par0< z < h. Onnote p la densité volumique de charges dans cet espace. B TRy

L’origine des potentiels €lectriques est choisie sur la surface conductrice
étudiée en z = 0. Les deux surfaces conductrices sont reliées a la masse.
a) A partir de I’équation de Poisson, déterminer les équations différentielles vérifiées par le
potentiel dans chacune des deux régions de I’espace.
b) Déterminer V(z). On rappelle que le potentiel et le champ sont des fonctions continues a
I’interface d’une distribution volumique de charges. Déterminer E( ¢)
¢) Représenter graphiquement V(z). On prendra h /¢=0,2.
d) On suppose que I’armature en z = ¢ porte une densité surfacique de charge c. Le champ
¢électrique au dessus de cette armature étant nul, déterminer en appliquant le théoréme de Gauss,
la valeur du champ ¢lectrique juste en dessous de cette armature, en fonction de G.
e) En déduire I’expression de ¢ en fonction de p et des dimensions du probléme.
f) Quelle est I’expression de la force subie par I’électrode supérieure ? Quel peut-étre le principe
de la mesure de la charge q présente au voisinage de la surface z=0 ?

VI. Influence de la main dans le Thérémine
Le thérémine est un boitier électronique avec deux antennes qui
produit de la musique sans que I’instrumentiste ne touche
I’instrument. Une antenne verticale est dite antenne de tonalité ou
pitch car on commande la hauteur de la note en faisant varier la
distance de la main droite a I’antenne verticale. L’antenne horizontale
en forme de boucle est utilisée pour faire varier I’intensité du son
selon la position de la main gauche. La sortie du son, proche de celui
d’une scie musicale, se fait par un haut-parleur. Cet instrument exige
de I’instrumentiste une grande précision des mouvements de ses
mains et une quasi-immobilité du reste du corps : la note juste est
difficile a atteindre. Les morceaux joués sont lents.
En premicere approche, on utilise le modé¢le suivant :
- L’antenne constitue 1’armature 1 d’un condensateur plan de potentiel V; et de surface S;
- L’autre armature, de potentiel nul est constituée par :

Le corps immobile de I’instrumentiste a la distance d de 1’armature 1,

La main droite « en avant du corps », a la distance x de I’armature 1, modélisée par une

surface plane s << S. S est ’aire totale des armatures en regard.

Armature 1 de notentiel V4
_____ Y r 73

d ] Surfaces << Surface 5
=

Armature 2 de potentiel V=0

1. Rappeler I’expression de la capacité d’un condensateur plan.
2. Rappeler la méthode d’obtention de cette relation.
3. Par quelle association (série ou parallele) peut-on modéliser le corps et la main droite de

I’instrumentiste ? En déduire I’expression de la capacité¢ C de I’ensemble, en fonction de €, S,
s, xetd.
L’instrumentiste déplace trés légérement la main d’une quantité dx petite devant (x-d). Exprimer la
nouvelle capacité de I’ensemble.



4. Quelle est la variation dC de la capacité au premier ordre en fonction de €, s, dx, et x ?
€0 =8,85.10'2 F.m™!. Faire I’application numérique pour s = 100 cm?, x = 20 cm et dx = 0,5cm.
Commenter.

VII. Condensateur sphérique

On considéere un systeme ¢électrique en deux parties, Q b
appelées armatures : une boule de rayon a qui est chargée
positivement dans tout son volume, et dont la charge é I a

¢lectrique totale est +Q; ainsi qu’une sphere creuse qui

I’entoure, de rayon b > a, et qui est chargée électriquement

en surface, et dont la charge électrique totale est-Q. Les -Q

deux parties sont séparées par du vide.

1. Déterminer 1’expression de la densité volumique de charge p dans la boule de rayon a, en fonction de
Q.

2. Déterminer I’expression de la densité surfacique de charge ¢ sur la sphére de rayon b en fonction de
Q.

3. Déterminer I’expression du champ électrique dans les trois zones de I’espacer <a,a<r<b, etr>b.
Tracer graphiquement la fonction E(r).

4. En déduire le potentiel électrique V(r) entre les deux armatures de ce systeme.

5. En déduire alors I’expression de la capacité C de ce condensateur.

VIIL Electron accéléré et champ magnétostatique

Dans un canon de microscope €lectronique, un électron A (masse m,, charge €lectrique —e) est
émis, avec une vitesse initiale négligeable, le long d’un axe Ox, par une plaque métallique P; portée a
un potentiel nul. Cet €lectron est accéléré, dans le vide, grace a
une grille métallique P, portée a un potentiel constant Cathode Vide

V, = 100 V. Les plaques P; et P, sont habituellement appelées k\ P
cathode et anode, respectivement. 0
P

1. Exprimer la vitesse v de A lorsqu’il atteint 1’anode en .4‘ = x
fonction des données. 2

2. Calculer v. On indique les valeurs approximatives des LV,
constantes fondamentales suivantes : TC)
me, ~9x 10731 kget e ~ 1,6.1071° C.

3. Une fois la vitesse v acquise, on s’arrange a la sortie (non 7

représentée sur la figure) du canon pour que 1’¢lectron

pénétre dans une région ou régne seulement un champ magnétique B , Stationnaire et uniforme, dont
la direction est perpendiculaire a la direction de la vitesse incidente de I’¢électron. Que dire quant a la
trajectoire de 1’électron dans cette région ?

A) L’¢lectron n’est pas dévié et suit donc une trajectoire rectiligne.

B) La trajectoire de 1’¢électron est une parabole.

C) La trajectoire de I’¢électron est circulaire de rayon proportionnel a B.

N

D) La trajectoire de I’¢électron est circulaire de rayon proportionnel a Ta.

4. Lorsque I’¢électron quitte la région ou régne le champ magnétique, que peut-on dire de son vecteur
vitesse v, et de sa trajectoire (on négligera I’influence du poids) ?
A) Le vecteur v, posséde une norme égale a 6 X 10° m.s™1.
B) Le vecteur v, a la méme direction que lorsque 1’électron est rentré dans la région du champ
magnétique.
C) La trajectoire de I’¢lectron est toujours circulaire.
D) La trajectoire de I’¢électron est rectiligne.



5. On s’intéresse a ’angle 6,,, dit de déflexion magnétique, que forme la direction de v, avec I’axe Ox

BL*

e

lorsque A sort de la région du champ magnétique. Cet angle est 6,, = p—

ou a est un nombre réel et L une longueur ; précisément, L est la longueur de la trajectoire de
I’¢lectron dans la région du champ magnétique. A 1’aide d’une analyse dimensionnelle, déterminer
a.



